D. J. Buggy and A. W. Crossley, Thermoregulation, mild perioperative hypothermia and post-anaesthetic shivering, British Journal of Anaesthesia, vol.84, issue.5, pp.615-628, 2000.
DOI : 10.1093/bja/84.5.615

URL : http://bja.oxfordjournals.org/cgi/content/short/84/5/615

K. Wilke, A. Martin, L. Terstegen, and S. S. Biel, A short history of sweat gland biology, International Journal of Cosmetic Science, vol.19, issue.3, pp.29-169, 2007.
DOI : 10.1111/j.1467-2494.2004.00255.x

. A. Pr, Denjean: Cours de Physiologie, 2007.

A. Marsh, J. Susan, and G. Davis, Physiological Responses to the Menstrual Cycle, Sports Medicine, vol.87, issue.1, pp.32-601, 2002.
DOI : 10.2165/00007256-200232100-00001

K. Kräuchi, How is the circadian rhythm of core body temperature regulated?, Clin

A. D. Venereol, Thermorégulation, Comprendre la peau, vol.132, pp.8549-8568, 2005.

D. H. Ellison, Disorders of sodium balance, Disorders of Water, Electrolytes, and Acid- Base

Z. Fumeaux, Hyponatrémie : approche diagnostique et thérapeutique en ambulatoire

M. J. Buono, R. Claros, T. Deboer, and J. Wong, Na+ secretion rate increases proportionally more than the Na+ reabsorption rate with increases in sweat rate, Journal of Applied Physiology, vol.105, issue.4, pp.1044-1048, 2008.
DOI : 10.1152/japplphysiol.90503.2008

M. J. Buono, K. D. Ball, and F. W. Kolkhorst, Sodium ion concentration vs. sweat rate relationship in humans, Journal of Applied Physiology, vol.103, issue.3, pp.990-994, 2007.
DOI : 10.1152/japplphysiol.00015.2007

D. Wendt, D. , L. J. Loon, and W. D. Lichtenbelt, Thermoregulation during Exercise in the Heat, Sports Medicine, vol.63, issue.8, pp.669-682, 2007.
DOI : 10.2165/00007256-200737080-00002

A. Takamata, T. Yoshida, N. Nishida, and T. Morimoto, Relationship of osmotic inhibition in thermoregulatory responses and sweat sodium concentration in humans, American Journal of Physiology, pp.280-283, 2001.

T. Kiss and A. Odani, Demonstration of the Importance of Metal Ion Speciation in Bioactive Systems, Bulletin of the Chemical Society of Japan, vol.80, issue.9, pp.80-89, 2007.
DOI : 10.1246/bcsj.80.1691

I. Ali and H. Y. Aboul-enein, Instrumental methods in metal ion speciation, 2006.
DOI : 10.1201/9781420019407

J. Cristol, B. Balint, B. Canaud, and M. Daurés, M??thodes de dosage du sodium dans les liquides biologiques, N??phrologie & Th??rapeutique, vol.3, pp.104-111, 2007.
DOI : 10.1016/S1769-7255(07)80017-4

M. S. Subramanian, Analysis of common ions at low concentrations in water

J. Mollard, 40 ans de gazométrie sanguine et autres analytes de l'urgence, Annales de Biologie Clinique, pp.58-131, 2000.

N. W. Alcock, Flame, Flameless, and Plasma Spectroscopy, Analytical Chemistry, vol.65, issue.12, pp.463-469, 1993.
DOI : 10.1021/ac00060a618

M. A. White, A comparison of Inductively Coupled Plasma Mass Spectrometry with Electrothermal Atomic Absorption Spectrophotometry for the Determination of Trace Elements in Blood and Urine from non Occupationally Exposed Populations, Journal of Trace Elements in Medicine and Biology, vol.13, issue.1-2, pp.13-93, 1999.
DOI : 10.1016/S0946-672X(99)80030-3

C. B. Boss and K. J. Fredeen, Concepts, instrumentation, and techniques in Inductively Coupled Plasma Optical Emission Spectroscopy, Editions Perkin Elmer, 1997.

T. J. Manning and W. R. Grow, Inductively Coupled Plasma - Atomic Emission Spectrometry, The Chemical Educator, vol.2, issue.1, pp.1-73, 1997.
DOI : 10.1007/s00897970103a

A. A. Ammann, Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool, Journal of Mass Spectrometry, vol.78, issue.4, pp.419-427, 2007.
DOI : 10.1002/jms.1206

A. K. Das, R. Chakraborty, M. L. Cervera, M. De, and . Guardia, Metal speciation in biological fluids ??? a review, Microchimica Acta, vol.3, issue.3-4, pp.122-209, 1996.
DOI : 10.1007/BF01245784

J. Weiss, Handbook of Ion Chromatography, third, completely revised and enlarged edition, 2004.

V. R. Meyer, Practical High-Performance Liquid Chromatography, 2004.

R. P. Buck and E. Lindner, Tracing the history of selective ion sensors, Analytical Chemistry, pp.88-99, 2001.

J. H. Ladenson, Evaluation of an instrument (Nova-i) for direct potentiometric analysis of sodium and potassium in blood and their indirect potentiometric determination in urine, Clin. Chem, vol.25, issue.5, pp.757-763, 1979.

A. Française-de-sécurité-sanitaires-des-produits-de-santé, Annales du contrôle national de qualité des analyses de biologie médicale, 2009.

L. S. Kuhn, Biosensors: Blockbuster or Bomb?, 1998.

P. Valdiguié, Biochimie clinique

D. G. Pijanowska and W. Torbicz, Biosensors for bioanalytical applications, Bulletin of the polish academy of sciences, vol.3, p.53, 2005.

C. M. Nrett and A. M. Oliveira-brett, Electrochemical sensing in solution-origins, applications and future perspectives, J. Solid State Electrochem, pp.15-1487, 2011.

P. Whitehead, Determination of ions in water-Techniques used and the role of purified water, LabPlus International, p.74, 2001.

J. Wang, Real-Time Electrochemical Monitoring:?? Toward Green Analytical Chemistry, Accounts of Chemical Research, vol.35, issue.9, pp.811-816, 2002.
DOI : 10.1021/ar010066e

B. F. Myasoedov, Chemical sensors, pp.383-387, 1992.

S. Laschi and M. Mascini, Planar electrochemical sensors for biomedical applications, Medical Engineering & Physics, vol.28, issue.10, pp.934-943, 2006.
DOI : 10.1016/j.medengphy.2006.05.006

M. Engin, A. Demirel, E. Z. Engin, and M. Fedakar, Recent developments and trends in biomedical sensors, Measurement, vol.37, issue.2, pp.37-173, 2005.
DOI : 10.1016/j.measurement.2004.11.002

C. Christophe, Intégration de microcapteurs électrochimiques en technologies "silicium et polymères" pour l'étude du stress oxydant. Application à la biochimie cutanée, Thèse de l'université Paul Sabatier, 2010.

C. D. Nugent, P. J. Mccullagh, E. T. Mcadams, and A. Lymberis, Personalised Health Management System, p.117, 2005.

Y. Wang, H. Xu, J. Zhang, and G. Li, Electrochemical Sensors for Clinic Analysis, Sensors, vol.8, issue.4, pp.2043-2081, 2008.
DOI : 10.3390/s8042043

S. Borgmann, A. Schulte, S. Neugebauer, and W. Schuhmann, Advances in Electrochemical Science and Engineering, 2011.

W. Vastarella, Enzyme modified electrodes in amperometric biosensors, 2001.

R. S. Freire, C. A. Pessoa, L. D. Mello, and L. T. Kubota, Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity, Journal of the Brazilian Chemical Society, vol.14, issue.2
DOI : 10.1590/S0103-50532003000200008

E. Wilkins and P. Atanasov, Glucose monitoring: state of the art and future possibilities, Medical Engineering & Physics, vol.18, issue.4, pp.273-288, 1996.
DOI : 10.1016/1350-4533(95)00046-1

J. Wang, Electrochemical Glucose Biosensors, Chemical Reviews, vol.108, issue.2, pp.814-825, 2008.
DOI : 10.1021/cr068123a

T. Chen, G. Binyamin, D. Schmidtke, K. Friedman, and A. Heller, In vivo Glucose Monitoring with Miniature " Wired " Glucose Oxidase Electrodes, Analytical Sciences, pp.17-297, 2001.

D. Pradhan, F. Niroui, and K. T. Leung, High-Performance, Flexible Enzymatic Glucose Biosensor Based on ZnO Nanowires Supported on a Gold-Coated Polyester Substrate, Applied materials and interfaces, pp.2-8, 2010.
DOI : 10.1021/am100413u

C. X. Guo and C. M. Li, Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite, Physical Chemistry Chemical Physics, vol.13, issue.38, pp.12-12153, 2010.
DOI : 10.1039/c0cp00378f

B. Chang and S. Park, Electrochemical Impedance Spectroscopy, Annual Review of Analytical Chemistry, vol.3, issue.1, pp.207-229, 2010.
DOI : 10.1146/annurev.anchem.012809.102211

F. Lisdat, The use of electrochemical impedance spectroscopy for biosensing, Analytical and Bioanalytical Chemistry, vol.47, issue.12, pp.1555-1567, 2008.
DOI : 10.1007/s00216-008-1970-7

N. R. Stradiotto, Electrochemical sensors: a powerful tool in analytical chemistry, Journal of the Brazilian Chemical Society, vol.14, issue.2, pp.14-16, 2003.
DOI : 10.1590/S0103-50532003000200003

M. Pohanka, Electrochemical biosensors ? principles and applications, J. Appl. Biomed, vol.6, pp.57-64, 2008.

P. A. Gibson, S. P. Millner, and . Higson, Labeless AC impedimetric antibody-based sensors with pg ml1 sensitivities for point-of-care biomedical applications, Biosensors and Bioelectronics, pp.24-1090, 2009.

Q. Gao, W. Zhang, Y. Guo, H. Qi, and C. Zhang, Highly sensitive impedimetric sensing of DNA hybridization based on the target DNA-induced displacement of gold nanoparticles attached to ssDNA probe, Electrochemistry Communications, vol.13, issue.4, pp.13-335, 2011.
DOI : 10.1016/j.elecom.2011.01.018

R. K. Shervedani and S. A. Mozaffari, Impedimetric sensing of uranyl ion based on phosphate functionalized cysteamine self-assembled monolayers, Analytica Chimica Acta, vol.562, issue.2, pp.562-223, 2006.
DOI : 10.1016/j.aca.2006.01.046

L. M. Olivier, P. S. Dunlop, J. A. Byrne, I. S. Blair, M. Boyle et al., An impedimetric sensor for monitoring the growth of Staphylococcus epidermidis, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006.
DOI : 10.1109/IEMBS.2006.260394

M. I. Prodromidis, Impedimetric Biosensors and Immunosensors, Pak. J. Anal. Environ. Chem, vol.8, pp.69-71, 2007.

A. Ceresa, Ion-Selective Polymeric Membrane Electrodes for Potentiometrie Trace Level Measurements" Swiss federal Institute of Technology, 2001.

A. Dybko, Analyte Recognition and Signal Conversion in Potentiometric and Optical Chemical Sensors, Journal of Environmental Studies, vol.11, pp.5-10, 2002.

J. Janata, Potentiometric microsensors, Chemical Reviews, vol.90, issue.5, pp.90-691, 1990.
DOI : 10.1021/cr00103a001

D. Liu, Enhancing EMF stability of solid-state ion-selective sensors by incorporating lipophilic silver-ligand complexes within polymeric films, Analytica Chimica Acta, vol.321, issue.2-3, pp.321-173, 1996.
DOI : 10.1016/0003-2670(95)00583-8

C. Masalles, Simple PVC???PPy electrode for pH measurement and titrations, Analytical and Bioanalytical Chemistry, vol.372, issue.4, pp.513-518, 2002.
DOI : 10.1007/s00216-001-1221-7

I. A. Marques and . Oliveira, Sodium ion sensitive microelectrode based on a p-tert- butylcalix[4]arene ethyl ester, Sensors and Actuators B, vol.130, pp.295-299, 2008.
URL : https://hal.archives-ouvertes.fr/ujm-00356865

H. Van-den and . Vlekkert, Solvent polymeric membranes combined with chemical solid-state sensors, The Analyst, vol.113, issue.7, pp.1029-1033, 1988.
DOI : 10.1039/an9881301029

X. Li, Elimination of neutral species interference at the ion-sensitive membrane/semiconductor device interface, Analytical Chemistry, vol.60, issue.5, pp.60-493, 1988.
DOI : 10.1021/ac00156a025

F. Faridbod, H 3 O + Ion Selective Microelectrode: An Asymmetric PVC Membrane Sensor, Int. J. Electrochem. Sci, vol.4, pp.1679-1690, 2009.

J. Janata, Twenty Years of Ion-selective Field-effect Transistors, Analyst, pp.119-2275, 1994.

A. D. Chan, Evidence for a water-rich surface region in poly(vinyl chloride)-based ion-selective electrode membranes, Analytical Chemistry, vol.64, issue.21, pp.2512-2517, 1992.
DOI : 10.1021/ac00045a010

E. Bakker, Selectivity of carrier-based ion-selective electrodes: is the problem solved?", trends in analytical chemist, pp.252-260, 1997.

E. Bakker, Selectivity of Potentiometric Ion Sensors, Analytical Chemistry, vol.72, issue.6, pp.1127-1133, 2000.
DOI : 10.1021/ac991146n

P. Fabry and C. Gondran, Capteurs électrochimiques, fonctionnement, utilisation, conception, cours et exercices corrigés

P. Buhlmann, Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors, Chemical Reviews, vol.98, issue.4, pp.98-1593, 1998.
DOI : 10.1021/cr970113+

E. Bakker, Hydrophobic Membranes as Liquid Junction-Free Reference Electrodes, Electroanalysis, pp.11-788, 1999.

Y. Mi, Polymeric Membrane pH Electrodes Based on Electrically Charged Ionophores, Analytical Chemistry, vol.70, issue.24, pp.5252-5258, 1998.
DOI : 10.1021/ac980678l

K. N. Mikhelson, Improvement of potentiometric selectivity of ion-exchanger based membranes doped with co-exchanger: Origin of the effect, Sensors and Actuators B: Chemical, vol.48, issue.1-3, pp.48-344, 1998.
DOI : 10.1016/S0925-4005(98)00069-0

E. Bakker, Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics, Chemical Reviews, vol.97, issue.8, pp.97-3083, 1997.
DOI : 10.1021/cr940394a

P. Buhlmann, EMF response of neutral-carrier based ion-sensitive field effect transistors with membranes free of ionic sites, Electrochimica Acta, vol.40, issue.18, pp.40-3021, 1995.
DOI : 10.1016/0013-4686(95)00237-9

E. Linder, Responses of site-controlled, plasticized membrane electrodes, Analytical Chemistry, vol.60, issue.4, pp.295-301, 1988.
DOI : 10.1021/ac00155a004

F. Faridbod, Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade, Sensors, vol.8, issue.4, pp.8-2331, 2008.
DOI : 10.3390/s8042331

D. N. Reinhoudt, Supramolecular materials and technologies, p.78, 2008.

Z. Li, X. Li, M. Rothmaier, and D. J. Harrison, Comparison of Numerical Modeling of Water Uptake in Poly(vinyl chloride)-Based Ion-Selective Membranes with Experiment, Analytical Chemistry, vol.68, issue.10, pp.68-1726, 1996.
DOI : 10.1021/ac9505583

Y. Tsujimura, Sodium ion-selective electrodes based on silicone-rubber membranes covalently incorporating neutral carriers, The Analyst, vol.121, issue.11, pp.1705-1709, 1996.
DOI : 10.1039/an9962101705

Y. Tsujimura, Comparison between silicone-rubber membranes and plasticized poly(vinyl chloride) membranes containing calix[4]arene ionophores for sodium ionsensitive field-effect transistors in applicability to sodium assay in human body fluids, Sensors and Actuators B, pp.22-195, 1994.

A. Haddaoui, Propriétés complexantes, extractantes et de transport des calix[4]arènes couronnes diamides en conformation cône vis-à-vis des cations alcalins, 2004.

C. Dinse, Extraction s??lective des actinides : application ?? l'analyse radiotoxicologique, Radioprotection, vol.32, issue.5, pp.32-659, 1997.
DOI : 10.1051/radiopro:1997124

V. Böhmer, Calixarenes, a versatile class of macrocyclic compounds, 1990.

C. D. Gutsche, ChemInform Abstract: CALIXARENES. 1. ANALYSIS OF THE PRODUCT MIXTURES PRODUCED BY THE BASE-CATALYZED CONDENSATION OF FORMALDEHYDE WITH PARA-SUBSTITUTED PHENOLS, Chemischer Informationsdienst, vol.43, issue.17, pp.43-4095, 1978.
DOI : 10.1002/chin.197917122

N. Muzet, Simulation par Dynamique Moléculaire de l'extraction d'ions par des calixarènes. Importance des phénomènes interfaciaux, Thèse, 1999.

W. S. Gibbons, Effects of plasticizers on the mechanical properties of poly(vinyl chloride) membranes for electrodes and biosensors, Polymer, vol.38, issue.11, pp.38-2633, 1997.
DOI : 10.1016/S0032-3861(97)85596-6

C. Mihali and N. Vaum, Use of Plasticizers for Electrochemical Sensors, Recent Advances in Plasticizers, p.2012
DOI : 10.5772/37006

B. Comeau, Plasticizers alternatives for use in polymer membrane ion selective electrodes, These, 2008.

W. P. Stauthamer, Influence of plasticizer on the selectivity of nitrate-sensitive CHEMFETs, Sensors and Actuators B: Chemical, vol.17, issue.3, pp.197-201, 1994.
DOI : 10.1016/0925-4005(93)00870-5

D. J. Harrison, Photopolymerization of plasticizer in ion-sensitive membranes on solid-state sensors, Analytical Chemistry, vol.61, issue.3, pp.61-246, 1989.
DOI : 10.1021/ac00178a012

L. Y. Heng and E. A. Hall, Producing ???Self-Plasticizing??? Ion-Selective Membranes, Analytical Chemistry, vol.72, issue.1, pp.72-114, 2000.
DOI : 10.1021/ac9904765

J. Franz and . Keplinger, Water Flux across Neutral Carrier Membranes, Anal. Chem, vol.70, pp.4271-4279, 1998.

K. Kimura, Unsymmetrical calix[4]arene ionophore/silicone rubber composite membranes for high-performance sodium ion-sensitive field-effect transistors, Analytical Chemistry, vol.64, issue.21, pp.2508-2511, 1992.
DOI : 10.1021/ac00045a009

R. Eugster, Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes, Analytical Chemistry, vol.63, issue.20, pp.63-2285, 1991.
DOI : 10.1021/ac00020a017

E. Bakker, Lipophilicity of tetraphenylborate derivatives as anionic sites in neutral carrier-based solvent polymeric membranes and lifetime of corresponding ion-selective electrochemical and optical sensors, Analytica Chimica Acta, vol.309, issue.1-3, pp.309-316, 1995.
DOI : 10.1016/0003-2670(95)00077-D

T. Rosatzin, E. Bakker, W. Suzuki, and . Simon, Lipophilic and immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors, Analytica Chimica Acta, vol.280, issue.2, pp.280-282, 1993.
DOI : 10.1016/0003-2670(93)85122-Z

A. Bratov, Lowering the detection limit of calcium selective ISFETs with polymeric membranes???, Talanta, vol.62, issue.1, pp.62-91, 2004.
DOI : 10.1016/S0039-9140(03)00402-8

H. J. Lee, All-Solid-State Sodium-Selective Electrodes Based on Room Temperature Vulcanizing-Type Silicone Rubber Matrix., Analytical Sciences, vol.13, issue.Supplement, pp.289-294, 1997.
DOI : 10.2116/analsci.13.Supplement_289

B. Hajji, P. Temple-boyer, J. Launay, T. D. Conto, and A. Martinez, pH, pK and pNa detection properties of SiO 2 /Si 3 N 4 ISFET chemical sensors, Microelectronics Reliability, pp.40-783, 2000.

Z. M. Baccar, N. Jaffrezic-renault, C. Martelet, H. Jaffrezic, G. Marest et al., Sodium microsensors based on ISFET/REFET prepared through an ion implantation REFERENCES BIBLIOGRAPHIQUES

J. Chovelon, Préparation de couches minces d'oxynitrure de silicium par PECVD en vue d'un greffage chimique. Application à un ISFET pH, Thèse de l'école centrale de Lyon, 1991.

C. Hawkins and J. Segura, Introduction to digital Electronics, p.2010

L. Bousse, Single electrode potentials related to flat???band voltage measurements on EOS and MOS structures, The Journal of Chemical Physics, vol.76, issue.10, pp.76-5128, 1982.
DOI : 10.1063/1.442812

M. W. Shinwari, Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design, Microelectronics Reliability, pp.47-2025, 2007.

J. R. Sandifer, Theory of interfacial potential differences: effects of adsorption onto hydrated (gel) and nonhydrated surfaces, Analytical Chemistry, vol.60, issue.15, pp.60-1553, 1988.
DOI : 10.1021/ac00166a016

C. D. Fung, A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, IEEE Transactions on Electron Devices, vol.33, issue.1, pp.33-34, 1986.
DOI : 10.1109/T-ED.1986.22429

L. Bousse, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, Transactions on electron devices, pp.30-1263, 1983.
DOI : 10.1109/T-ED.1983.21284

S. H. Berhens and D. G. Grier, The charge of glass and silica surfaces, The Journal of Chemical Physics, vol.115, issue.14, pp.115-129, 2001.
DOI : 10.1063/1.1404988

R. Kuhnhold, Modeling the pH response of silicon nitride ISFET devices, Sensors and Actuators B: Chemical, vol.68, issue.1-3, pp.307-312, 2000.
DOI : 10.1016/S0925-4005(00)00449-4

B. Premanode, N. Silawan, W. P. Chan, and C. Toumazou, A composite ISFET readout circuit employing current feedback, Sensors and Actuators B: Chemical, vol.127, issue.2, pp.486-490, 2007.
DOI : 10.1016/j.snb.2007.05.001

W. Sant, Développement des micro-capteurs chimiques CHEMFETs pour des applications à l'hémodialyse, Thèse, 2004.

D. Tomaszewski, C. Yang, B. Jaroszewicz, M. Zaborowski, P. Grabiec et al., Electrical characterization of ISFETs, Journal of telecommunications and information technology, vol.3, 2007.

J. J. Liou, A. Otiz-conde, and F. G. Sanchez, Extraction of the threshold voltage of MOSFETs: an overview, 1997 IEEE Hong Kong Proceedings Electron Devices Meeting, 1997.
DOI : 10.1109/HKEDM.1997.642325

V. K. Khanna, Critical issues, processes and solutions in ISFET packaging, Microelectronics international, pp.25-27, 2008.
DOI : 10.1108/13565360810875976

Y. G. Vlasov, Y. A. Tarantov, and P. Bobrov, Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors?a critical review, Analytical and Bioanalytical Chemistry, vol.376, issue.6, pp.376-788, 2003.
DOI : 10.1007/s00216-003-1957-3

B. Torbiero, Développement de microcapteurs électrochimiques pour l'analyse en phase liquide, Thèse de l'INSA de Toulouse, 2006.

B. Hajji, pH, pK and pNa detection properties of SiO2/Si3N4 ISFET chemical sensors, Microelectronics Reliability, vol.40, issue.4-5, pp.40-783, 2000.
DOI : 10.1016/S0026-2714(99)00285-1

S. Jamasb, A physical model for threshold voltage instability in Si 3 N4-Gate H + -Sensitive FET's (pH ISFET's), IEEE Transactions on electron devices, pp.40-1239, 1998.

S. Jamasb, An Analytical Technique for Counteracting Drift in Ion-Selective Field Effect Transistors (ISFETs), IEEE Sensors Journal, vol.4, issue.6, pp.795-801, 2004.
DOI : 10.1109/JSEN.2004.833148

A. K. Covington, Recent advances in microelectronic ion-sensitive devices (ISFETs). The operational transducer, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.82, issue.4, pp.1209-1215, 1986.
DOI : 10.1039/f19868201209

S. D. Moss, J. Janata, and C. C. Jonhson, Potassium ion-sensitive field effect transistor, Analytical Chemistry, vol.47, issue.13, pp.47-2238, 1975.
DOI : 10.1021/ac60363a005

S. J. Harris, Chemically modified field effect transistors; a sodium ion selective sensor based on calix[4]arene receptor molecules, Analytica chimica acta, pp.254-75, 1991.

T. Maruizumi, D. Wegmann, G. Suter, D. Ammann, and W. Simon, Neutral carrier-based Na+-selective electrode for application in blood serum, Mikrochimica Acta, vol.32, issue.5-6, pp.8-88, 1986.
DOI : 10.1007/BF01206726

J. A. Brunink, J. R. Haak, J. G. Bomer, and D. N. Reinhoudt, Chemically modified field effect transistors; a sodium ion selective sensor based on calyx[4]arene receptor molecules, Analytica Chimica Acta, pp.254-75, 1991.

Z. Brzozka, Durable NH4+-sensitive CHEMFET, Sensors and Actuators B: Chemical, vol.44, issue.1-3, pp.527-531, 1997.
DOI : 10.1016/S0925-4005(97)00160-3

E. Malinowska, Enhanced electrochemical performance of solid-state ion sensors based on silicone rubber membranes, Sensors and Actuators B: Chemical, vol.33, issue.1-3, pp.161-167, 1996.
DOI : 10.1016/0925-4005(96)80091-8

I. Humenyuk, Développement des microcapteurs chimiques chemFETs pour l'analyse de l'eau, Thèse de l'INSA de Toulouse, 2005.

L. Y. Heng, Producing ???Self-Plasticizing??? Ion-Selective Membranes, Analytical Chemistry, vol.72, issue.1, pp.42-51, 2000.
DOI : 10.1021/ac9904765

H. J. Lee, H. J. Oh, G. Cui, G. S. Cha, and H. Nam, All-Solid-State Sodium-Selective Electrodes Based on Room Temperature Vulcanizing-Type Silicone Rubber Matrix., Analytical Sciences, vol.13, issue.Supplement, pp.289-294, 1997.
DOI : 10.2116/analsci.13.Supplement_289

P. Van-der and . Wal, New membrane materials for potassium-selective ion-sensitive field-effect transistors, Analytica Chimica Acta, vol.231, pp.231-272, 1990.
DOI : 10.1016/S0003-2670(00)86395-3

R. Eugster, Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes, Analytical Chemistry, vol.63, issue.20, pp.2285-2289, 1991.
DOI : 10.1021/ac00020a017

W. Wróblewski, NH 4 + sensitive chemically modified field effect transistors based on siloxane membranes for flow-cell applications, Analytica Chimica Acta, pp.401-105, 1999.

J. A. Brunink, The design of durable Na+-selective CHEMFETs based on polysiloxane membranes, Journal of Electroanalytical Chemistry, vol.378, issue.1-2, pp.185-200, 1994.
DOI : 10.1016/0022-0728(94)87071-3

M. G. Bulmer and G. D. , The concentration of sodium in thermal sweat, The Journal of Physiology, vol.132, issue.1, pp.115-122, 1956.
DOI : 10.1113/jphysiol.1956.sp005506

U. Oesch, D. Ammann, and W. Simon, Ion-selective membrane electrodes for clinical use, Clin. Chem, vol.32, issue.8, pp.1448-1459, 1986.

M. J. Patterson, S. D. Galloway, and M. A. Nimmo, Variations in regional sweat composition in normal human males, Experimental Physiology, vol.85, issue.6, pp.85-91, 2000.
DOI : 10.1017/S0958067000020583

C. Dumschat, S. Alazard, S. Adam, M. Knoll, and K. Cammann, Filled fluorosilicone as matrix material for ion-selective membranes, The Analyst, vol.121, issue.4, pp.121-527, 1996.
DOI : 10.1039/an9962100527

G. Hogg, Novel membrane material for ion-selective field-effect transistors with extended lifetime and improved selectivity, Analytica Chimica Acta, vol.335, issue.1-2, pp.103-109, 1996.
DOI : 10.1016/S0003-2670(96)00284-X

I. J. Yoon, D. K. Lee, H. Nam, G. S. Cha, T. D. Strong et al., Ion sensors using onecomponent room temperature vulcanized silicone rubber matrices, Journal of Electroanalytical Chemistry, pp.464-135, 1999.

D. Kaiser, R. Songo-williams, and E. Drack, Hydrogen ion and electrolyte excretion of the single human sweat gland, Pfl???gers Archiv European Journal of Physiology, vol.291, issue.1, pp.349-63, 1974.
DOI : 10.1007/BF00587917