Numerical study of laminar and turbulent flames propagating in a fan-stirred vessel - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Thèse Année : 2014

Numerical study of laminar and turbulent flames propagating in a fan-stirred vessel

Etude numérique de la propagation de flammes laminaires et trubulentes dans une enceinte sphérique agitée par ventilateurs

Résumé

Fossil energy is widely used since the 1900s to satisfy the global increasing energy demand. However, combustion is a process releasing pollutants such as CO2 and NOx. One of the major challenges of the 21th century is to reduce these emissions and car man- ufacturers are involved in this race. To increase fuel efficiency of piston engines, some technical solutions are developed such as ’downsizing‘. It consists in reducing the engine size while maintaining its performances using a turbocharger to increase the trapped mass in the combustion chamber. Unfortunately, downsizing can lead to abnormal com- bustions: intense cycle to cycle variations can appear, the fresh mixture can auto-ignite (ignition before spark-plug ignition) leading to knock or rumble. Large Eddy Simulation has proven to be a reliable tool to predict these abnormal combustions in real engines. However, such computations are performed using models to predict the flame propagation in the combustion chamber. Theses models are generally based on correlations derived in cases where turbulence is assumed to be homogeneous and isotropic. Defining theo- retically or numerically such a turbulence is a simple task but experimentally it is more challenging. This thesis focuses on a apparatus used in most experimental systems: fans stirred vessel. The objective of this work is twofold: 1) characterize the turbulence generated inside the vessel to check wether it is homo- geneous and isotropic or not, 2) finely characterize laminar and turbulent combustion in this setup in order to in- crease the knowledge in this field, and thereby improve models used. First, a laminar flame propagation study has been conducted to address both confine- ment and curvature effects on the laminar flame speed in a spherical configuration. The main difficulty to perform the simulation of the whole configuration consists in finding a numerical method able to compute accurately the flow generated by one fan and able to handle six fans simultaneously too. Two numerical methodologies have been tested. First an Immersed Boundaries method was implemented. Despite good results obtained on academic test cases, this method was shown to be unadapted to compute accurately the flow generated by one fan. On the other hand, a numerical approach, coming from turbomachinery calculations and based on code coupling (called MISCOG), demonstrates its ability to do it and it is used to compute the flow generated by the six fans inside the closed vessel. Non-reacting flow is first analyzed and reveals a zone at the vessel center of around 6 cm of diameter where mean velocity is near zero and turbulence is almost homogeneous and isotropic. After that, the premixed fresh mixture is ignited depositing a hot gases kernel at the vessel center and the turbulent propagation phase is analyzed. In particular, it is shown that the amount of energy deposited at ignition is a critical parameter.
Les énergies fossiles sont largement utilisées depuis les années 1900 pour satisfaire l’augmentation mondiale de la demande d’énergie. Cependant, la combustion est un procédé qui libère des polluants comme le CO2 et les NOx. Un des principaux challenges du 21ème siècle est de réduire ces émissions et les constructeurs automobiles sont impliqués dans cette course. Pour augmenter le rendement des moteurs à pistons, des solutions techniques, tels que le ”downsizing”, sont développées. Cette technique consiste à réduire la cylindrée des moteurs tout en maintenant leurs performances grâce à un turbocompresseur qui permet d’augmenter la masse enfermée dans la chambre de combustion. Malheureusement, l’augmentation de la pression dans les cylindres induite par le turbocompresseur est à l’origine de combustions anormales: des variations cycles à cycles importantes apparaissent, les gaz frais peuvent s’auto-allumer (allumage avant le claquage de la bougie) entrainant des phénomènes de cliquetis ou de rumble. La Simulation aux Grandes Echelles (SGE) a déjà prouvé qu’elle était un outil fiable pour prédire ces combustions anormales. Cependant ces calculs reposent sur des modèles pour prédire la propagation de la flamme dans la chambre de combustion. Ces modèles sont généralement issus de corrélations réalisées dans des cas où la turbulence est supposée homogène et isotrope. Définir théoriquement ou numériquement une telle turbulence est relativement simple mais expérimentalement la tâche est plus délicate. Cette thèse s’intéresse à un dispositif classiquement utilisé: une enceinte fermée dans laquelle la turbulence est générée par des ventilateurs. L’objectif de ce travail est donc double: 1) caractériser la turbulence générée dans ce type d’enceinte pour vérifier si elle est homogène et isotrope. 2) caractériser finement la combustion, laminaire et turbulente, afin d’enrichir les connaissances dans ce domaine et ainsi améliorer les modèles utilisés. Une première étude sur la propagation des flammes laminaires a été menée. Elle présente les effets de l’étirement et du confinement sur la vitesse de flamme laminaire. La principale difficulté pour la simulation de l’enceinte complète consiste à trouver une méthode numérique permettant de reproduire précisément l’écoulement généré par un ventilateur mais aussi d’en gérer plusieurs simultanément. Deux méthodes ont alors été testées. Premièrement, une méthode type Frontières Immergées a été implémentée dans le code de calcul AVBP. Malgré les bons résultats obtenus sur des cas tests simples, cette méthode ne s’est pas montrée adaptée pour reproduire précisément l’écoulement généré par un seul ventilateur. Une autre approche, provenant du monde du calcul des turbomachines, et basée sur le couplage de codes (appelée MISCOG), a quant à elle démontré ses capacités à le faire et est donc utilisée pour calculer l’écoulement généré par les six ventilateurs à l’intérieur de l’enceinte. L’écoulement non réactif est d’abord analysé: les résultats montrent qu’il existe une zone d’environ 6 cm de diamètre au centre de l’enceinte dans laquelle la vitesse moyenne de l’écoulement est proche de zéro et dans laquelle la turbulence est quasiment homogène et isotrope. Enfin, le pré-mélange de gaz frais est allumé en déposant un noyau de gaz chauds au centre de l’enceinte et la phase de propagation turbulente est analysée. En particulier, il est montré que la température des gaz brulés déposés au moment de l’allumage est un paramètre critique.
Fichier principal
Vignette du fichier
PhD_Adrien_Bonhomme.pdf (35.26 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-01227800 , version 1 (12-11-2015)
tel-01227800 , version 2 (27-10-2023)

Identifiants

  • HAL Id : tel-01227800 , version 1

Citer

Adrien Bonhomme. Numerical study of laminar and turbulent flames propagating in a fan-stirred vessel. Reactive fluid environment. INP DE TOULOUSE, 2014. English. ⟨NNT : ⟩. ⟨tel-01227800v1⟩

Collections

ANR
131 Consultations
56 Téléchargements

Partager

Gmail Facebook X LinkedIn More