A. Agrawal and S. V. Prabhu, Deduction of slip coefficient in slip and transition regimes from existing cylindrical Couette flow data, Experimental Thermal and Fluid Science, vol.32, issue.4, pp.991-996, 2008.
DOI : 10.1016/j.expthermflusci.2007.11.010

S. Albertoni, C. Cercignani, and L. Gotusso, Numerical Evaluation of the Slip Coefficient, Physics of Fluids, vol.12, issue.7, pp.993-996, 1963.
DOI : 10.1098/rstl.1879.0067

C. Aubert and S. Colin, High-order boundary conditions for gaseous flows in rectangular microchannels, Microscale Therm. Eng, vol.5, issue.1, pp.41-54, 2001.

P. Bahukudumbi, A UNIFIED ENGINEERING MODEL FOR STEADY AND QUASI-STEADY SHEAR-DRIVEN GAS MICROFLOWS, Microscale Thermophysical Engineering, vol.7, issue.4, pp.291-315, 2003.
DOI : 10.1080/10893950390243581

A. Beskok and G. Karniadakis, A model for flows in channels, pipes, and ducts at micro and nano scales, journal of Microscale Thermophysics Engineering, vol.3, pp.43-77, 1999.

G. Bird, Molecular gas dynamics and the direct simulation of gas flows, 1994.

G. A. Bird, Monte Carlo simulation in an engineering context, Progr. Astro. Aero, vol.74, pp.239-255, 1981.

H. Brenner, Navier???Stokes revisited, Physica A: Statistical Mechanics and its Applications, vol.349, issue.1-2, pp.60-132, 2005.
DOI : 10.1016/j.physa.2004.10.034

S. Colin, P. Lalonde, and R. Caen, Validation of a Second-Order Slip Flow Model in Rectangular Microchannels, Heat Transfer Engineering, vol.2, issue.3, pp.23-30, 2004.
DOI : 10.1016/0017-9310(64)90161-9

W. Crookes, On Attraction and Repulsion Resulting from Radiation, Philosophical Transactions of the Royal Society of London, vol.164, issue.0, pp.501-527, 1874.
DOI : 10.1098/rstl.1874.0015

S. K. Dadzie and H. Brenner, Predicting enhanced mass flow rates in gas microchannels using nonkinetic models, Physical Review E, vol.170, issue.3, p.36318, 2012.
DOI : 10.1103/PhysRevE.80.056303

R. G. Deissler, An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases, International Journal of Heat and Mass Transfer, vol.7, issue.6, pp.681-694, 1964.
DOI : 10.1016/0017-9310(64)90161-9

N. Dongari, F. Durst, and S. Chakraborty, Predicting microscale gas flows and rarefaction effects through extended Navier???Stokes???Fourier equations from phoretic transport considerations, Microfluidics and Nanofluidics, vol.25, issue.9, pp.4-5, 2010.
DOI : 10.1007/978-1-4612-0061-1

N. Dongari, A. Sharma, and F. Durst, Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes, Microfluidics and Nanofluidics, vol.44, issue.12, pp.679-692, 2009.
DOI : 10.1109/84.585795

T. E. Ewart, P. Perrier, I. Graur, and J. G. Mã©olans, Tangential momemtum accommodation in microtube, Microfluidics and Nanofluidics, vol.472, issue.N9, pp.689-695, 2007.
DOI : 10.1007/s10404-007-0158-3

URL : https://hal.archives-ouvertes.fr/hal-01443359

T. E. Ewart, P. Perrier, I. A. Graur, and J. G. Mã?olans, Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes, Journal of Fluid Mechanics, vol.197, pp.337-356, 2007.
DOI : 10.1116/1.569065

URL : https://hal.archives-ouvertes.fr/hal-01442523

A. Frezzotti, H. Si-hadj-mohand, C. Barrot, and S. Colin, Role of diffusion on molecular tagging velocimetry technique for rarefied gas flow analysis, Microfluidics and Nanofluidics, vol.13, issue.4, 2014.
DOI : 10.1007/s10404-012-1012-9

I. A. Graur, J. G. Meolans, and D. E. Zeitoun, Analytical and numerical description for isothermal gas flows in microchannels, Microfluidics and Nanofluidics, vol.45, issue.5, pp.64-77, 2006.
DOI : 10.1007/978-1-4899-6381-9

N. G. Hadjiconstantinou, Comment on Cercignani???s second-order slip coefficient, Physics of Fluids, vol.14, issue.8, pp.2352-2354, 2003.
DOI : 10.1063/1.1431243

S. G. Kandlikar, S. Garimella, D. Li, S. Colin, and M. R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels, 2006.

G. Karniadakis and A. Beskok, Micro Flows: Fundamentals and Simulation, Microflows and Nanoflows Fundamentals and Simulation, 2002.
DOI : 10.1115/1.1483361

G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows, 2005.

K. Koura and H. Matsumoto, Variable soft sphere molecular model for inverse???power???law or Lennard???Jones potential, Physics of Fluids A: Fluid Dynamics, vol.117, issue.10, pp.2459-2465, 1991.
DOI : 10.2977/prims/1195192451

Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Lattice Boltzmann modeling of microchannel flows in the transition flow regime, Microfluidics and Nanofluidics, vol.77, issue.1, pp.607-618, 2011.
DOI : 10.1209/0295-5075/77/30003

C. R. Lilley and J. E. Sader, Velocity profile in the Knudsen layer according to the Boltzmann equation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.74, issue.1, 2008.
DOI : 10.1103/PhysRevE.74.046704

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Velocity boundary condition at solid walls in rarefied gas calculations, Physical Review E, vol.70, issue.1, p.17303, 2004.
DOI : 10.1146/annurev.fluid.32.1.779

D. A. Lockerby, J. M. Reese, and M. A. Gallis, Capturing the Knudsen Layer in Continuum-Fluid Models of Nonequilibrium Gas Flows, AIAA Journal, vol.43, issue.6, pp.1391-1393, 2005.
DOI : 10.1016/0021-8502(82)90019-2

S. K. Loyalka, Approximate Method in the Kinetic Theory, Physics of Fluids, vol.14, issue.11, pp.2291-2294, 1971.
DOI : 10.1063/1.1693331

S. K. Loyalka, N. Petrellis, and T. S. Storvick, Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accomodation at the surface, Physics of Fluids, vol.57, issue.9, pp.1094-1099, 1975.
DOI : 10.1063/1.861293

L. M. Lund and A. S. Berman, Flow and Self???Diffusion of Gases in Capillaries. Part I, Journal of Applied Physics, vol.28, issue.2, pp.2489-2495, 1966.
DOI : 10.1080/14786444908561255

Q. Lv, X. Liu, E. Wang, and S. Wang, Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers, Physical Review E, vol.88, issue.1, p.13007, 2013.
DOI : 10.1017/S0022112010005021

M. Jr, W. , G. M. Kremer, and F. M. Sharipov, Couette flow with slip and jump boundary conditions, Continuum Mechanics and Thermodynamics, vol.12, issue.6, pp.379-386, 2000.

J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, Second-order slip laws in microchannels for helium and nitrogen, Physics of Fluids, vol.15, issue.1, pp.2613-2621, 2003.
DOI : 10.1063/1.556019

J. C. Maxwell, On Stresses in Rarified Gases Arising from Inequalities of Temperature, Philosophical Transactions of the Royal Society of London, vol.170, issue.0, pp.231-256, 1879.
DOI : 10.1098/rstl.1879.0067

S. Naris, D. Valougeorgis, D. Kalempa, and F. Sharipov, Gaseous mixture flow between two parallel plates in the whole range of the gas rarefaction, Physica A: Statistical Mechanics and its Applications, vol.336, issue.3-4, pp.3-4, 2004.
DOI : 10.1016/j.physa.2003.12.047

T. Ohwada, Y. Sone, and K. Aoki, Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard???sphere molecules, Physics of Fluids A: Fluid Dynamics, vol.1, issue.9, pp.1588-1599, 1989.
DOI : 10.1063/1.857462

L. S. Pan, G. R. Liu, and K. Y. Lam, Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo, Journal of Micromechanics and Microengineering, vol.9, issue.1, p.89, 1999.
DOI : 10.1088/0960-1317/9/1/312

P. Perrier, I. A. Graur, T. Ewart, and J. G. Meolans, Mass flow rate measurements in microtubes: From hydrodynamic to near free molecular regime, Physics of Fluids, vol.1, issue.4, pp.42004-042011, 2011.
DOI : 10.1116/1.582006

URL : https://hal.archives-ouvertes.fr/hal-01443385

J. Pitakarnnop, Analyse expérimentale et simulation numérique d'écoulements raréfiés de gaz simples et de mélanges gazeux dans les microcanaux, 2009.

J. Pitakarnnop, S. Varoutis, D. Valougeorgis, S. Geoffroy, L. Baldas et al., A novel experimental setup for gas microflows, Microfluidics and Nanofluidics, vol.472, issue.1, pp.57-72, 2010.
DOI : 10.1017/S0022112002002203

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.626.3049

W. G. Pollard and R. D. Present, On Gaseous Self-Diffusion in Long Capillary Tubes, Physical Review, vol.9, issue.7, pp.762-774, 1948.
DOI : 10.1002/andp.19103381623

R. D. Present, Kinetic theory of gasesExtending the Navier?Stokes solutions to transition regime in twodimensional micro-and nanochannel flows using information preservation scheme, Physics of Fluids, vol.21, issue.8, p.82001, 1958.

F. Sharipov and J. L. Strapasson, Benchmark problems for mixtures of rarefied gases. I. Couette flow, Physics of Fluids, vol.25, issue.2, p.27101, 1994.
DOI : 10.1016/j.jcp.2009.01.016

C. Shen, Rarefied Gas Dynamics Fundamentals, Simulations and Micro Flows, 2005.

C. E. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani???Lampis boundary condition, Physics of Fluids, vol.52, issue.6, pp.1696-1701, 2003.
DOI : 10.1063/1.1567284

T. Veltzke, M. Baune, and J. Thoming, The contribution of diffusion to gas microflow: An experimental study, Physics of Fluids, vol.24, issue.8, p.82004, 2012.
DOI : 10.1063/1.3562948

T. Veltzke and J. Thöming, An analytically predictive model for moderately rarefied gas flow, Journal of Fluid Mechanics, vol.170, pp.406-422, 2012.
DOI : 10.1007/s00348-006-0176-z

M. Wakabayashi, T. Ohwada, and F. Golse, Numerical analysis of the shear and thermal creep flows of a rarefied gas over the plane wall of a Maxwell-type boundary on the basis of the linearized Boltzmann equation for hard-sphere molecules, Eur J Mech B/Fluids, vol.15, pp.175-201, 1996.

L. Wu, A slip model for rarefied gas flows at arbitrary Knudsen number, Applied Physics Letters, vol.81, issue.25, p.253103, 2008.
DOI : 10.1063/1.1384867

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1129&context=mechengfacpub

W. Zhang, G. Meng, and X. Wei, A review on slip models for gas microflows, Microfluidics and Nanofluidics, vol.31, issue.3, pp.845-882, 2012.
DOI : 10.2514/3.11726

K. P. Angele and B. Muhammad-klingmann, A simple model for the effect of peak-locking on the accuracy of boundary layer turbulence statistics in digital PIV, Experiments in Fluids, vol.23, issue.9, pp.341-347, 2005.
DOI : 10.1007/978-3-662-03637-2

A. C. Ashwood, S. J. Vanden-hogen, M. A. Rodarte, C. R. Kopplin, D. J. Rodríguez et al., Reprint of: A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow, International Journal of Multiphase Flow, vol.67, issue.0, pp.200-212, 2014.
DOI : 10.1016/j.ijmultiphaseflow.2014.10.011

R. Basu, A. M. Naguib, and M. M. Koochesfahani, Feasibility study of whole-field pressure measurements in gas flows: molecular tagging manometry, Experiments in Fluids, vol.37, issue.1, pp.67-75, 2010.
DOI : 10.1007/BF00223244

M. Bergoglio, D. Mari, J. Chen, H. Si-hadj-mohand, S. Colin et al., Experimental and computational study of gas flow delivered by a rectangular microchannels leak, Measurement, vol.73, pp.551-562, 2015.
DOI : 10.1016/j.measurement.2015.06.011

S. Burgmann, N. Van-der-schoot, C. Asbach, J. Wartmann, and R. Lindken, Analysis of tracer particle characteristics for micro PIV in wall-bounded gas flows, La Houille Blanche, issue.4, pp.55-61, 2011.
DOI : 10.1051/lhb/2011041

A. Charogiannis and F. Beyrau, Laser induced phosphorescence imaging for the investigation of evaporating liquid flows, Experiments in Fluids C7 -1518, pp.1-15, 2013.
DOI : 10.1016/j.combustflame.2010.06.004

S. Colin, Rarefaction and compressibility effects on steady and transient gas flows in microchannels, Microfluidics and Nanofluidics, vol.17, issue.3, pp.268-279, 2005.
DOI : 10.1115/1.3650793

A. Demsis, B. Verma, S. V. Prabhu, and A. Agrawal, Experimental determination of heat transfer coefficient in the slip regime and its anomalously low value, Physical Review E, vol.84, issue.1, p.16311, 2009.
DOI : 10.1080/10407780601149847

D. Du, Z. Li, and Z. Guo, Friction resistance for gas flow in smooth microtubes, Science in China Series E: Technological Sciences, vol.104, issue.4, pp.171-177, 2000.
DOI : 10.1080/08916159408946484

O. Edward, H. Neall, and C. W. Larson, Primary Processes in the Acetone Photochemical System, The Journal of Phyaical Chemistry, vol.73, issue.4, 1969.

A. M. Elbaz and R. W. Pitz, N2O molecular tagging velocimetry, Applied Physics B, vol.20, issue.4, pp.961-969, 2012.
DOI : 10.1063/1.555890

T. Ewart, P. Perrier, I. Graur, and J. G. Méolans, Mass flow rate measurements in gas micro flows, Experiments in Fluids, vol.472, issue.8, pp.487-498, 2006.
DOI : 10.1007/978-1-4899-6381-9

URL : https://hal.archives-ouvertes.fr/hal-01443354

T. Handa, K. Mii, T. Sakurai, K. Imamura, S. Mizuta et al., Study on supersonic rectangular microjets using molecular tagging velocimetry, Experiments in Fluids, vol.44, issue.5, pp.1-9, 2014.
DOI : 10.2514/1.14879

C. Hecht, N. Schoot, H. Kronemayer, R. Lindken, and C. Schulz, Visualization of the gas flow in fuel cell bipolar plates using molecular flow tagging velocimetry and micro PIV, 15th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, 2010.

C. Hecht, N. Van-der-schoot, H. Kronemayer, I. Wlokas, R. Lindken et al., Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry, Experiments in Fluids, vol.160, issue.3, pp.743-748, 2012.
DOI : 10.1016/j.jpowsour.2006.02.043

H. Hu and M. M. Koochesfahani, Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder, Measurement Science and Technology, vol.17, issue.6, p.1269, 2006.
DOI : 10.1088/0957-0233/17/6/S06

J. Jang and S. T. Wereley, Pressure distributions of gaseous slip flow in straight and uniform rectangular microchannels, Microfluidics and Nanofluidics, vol.472, issue.1, pp.41-51, 2004.
DOI : 10.1557/PROC-546-51

S. Kandlikar, S. Garimella, D. Li, and S. Colin, Heat transfer and fluid flow in mini channels and microchannels, 2013.

G. Karniadakis and A. Beskok, Micro Flows: Fundamentals and Simulation, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483361

M. Knudsen, Die Gesetze der Molekularstr¨omung und der inneren Reibungsstr¨omung der Gase durch R¨ohren, Annalen der Physik, vol.28, pp.75-130, 1909.
DOI : 10.1002/andp.19093330106

M. J. Kohl, S. I. Abdel-khalik, S. M. Jeter, and D. L. Sadowski, A microfluidic experimental platform with internal pressure measurements, Sensors and Actuators A: Physical, vol.118, issue.2, pp.212-221, 2005.
DOI : 10.1016/j.sna.2004.07.014

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2010.
DOI : 10.1007/978-0-387-46312-4

P. Lalonde, S. Colin, and R. Caen, Mesure de d????bit de gaz dans les microsyst????mesGas flow measurement in microsystems, M????canique & Industries, vol.2, issue.4, pp.355-362, 2001.
DOI : 10.1016/S1296-2139(01)01106-X

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows, Experiments in Fluids, vol.37, issue.3, pp.403-411, 2003.
DOI : 10.1364/AO.37.004963

W. R. Lempert, N. Jiang, M. Samimy, and S. Sethuram, Molecular Tagging Velocimetry Measurements in Supersonic Microjets, AIAA Journal, vol.13, issue.6, pp.1065-1070, 2002.
DOI : 10.1021/jp001873i

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles, Journal of Biomechanics, vol.40, issue.12, pp.2752-2757, 2007.
DOI : 10.1016/j.jbiomech.2007.01.012

M. Löffler, F. Beyrau, and A. Leipertz, Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines, Applied Optics, vol.49, issue.1, pp.37-49, 2010.
DOI : 10.1364/AO.49.000037

R. Markus, E. W. Christian, T. W. Steven, and K. Jürgen, Particle image velocimetry: a practical guide, 2007.

Y. Matsuda, R. Misaki, H. Yamaguchi, and T. Niimi, Pressure-sensitive channel chip for visualization measurement of micro gas flows, Microfluidics and Nanofluidics, vol.37, issue.5, pp.507-510, 2011.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

Y. Matsuda, H. Mori, Y. Sakazaki, T. Uchida, S. Suzuki et al., Extension and characterization of pressure-sensitive molecular film, Experiments in Fluids, vol.35, issue.2, pp.1025-1032, 2009.
DOI : 10.3154/jvs.21.203

Y. Matsuda, T. Uchida, S. Suzuki, R. Misaki, H. Yamaguchi et al., Pressure-sensitive molecular film for investigation of micro gas flows, Microfluidics and Nanofluidics, vol.13, issue.21, pp.165-171, 2011.
DOI : 10.1021/la9702852

C. Meyer, M. Hoffmann, and M. Schlüter, Micro-PIV analysis of gas???liquid Taylor flow in a vertical oriented square shaped fluidic channel, International Journal of Multiphase Flow, vol.67, issue.0, pp.140-148, 2014.
DOI : 10.1016/j.ijmultiphaseflow.2014.07.004

G. L. Morini, M. Lorenzini, and S. Salvigni, Friction characteristics of compressible gas flows in microtubes, Experimental Thermal and Fluid Science, vol.30, issue.8, pp.733-744, 2006.
DOI : 10.1016/j.expthermflusci.2006.03.003

G. L. Morini, Y. Yang, H. Chalabi, and M. Lorenzini, A critical review of the measurement techniques for the analysis of gas microflows through microchannels, Experimental Thermal and Fluid Science, vol.35, issue.6, pp.849-865, 2011.
DOI : 10.1016/j.expthermflusci.2011.02.005

M. Murad, H. Ismailov, A. Schock, and . Fedewa, Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry, Experiments in Fluids, vol.41, issue.1, pp.57-65, 2006.

C. Orlemann, C. Schulz, and J. Wolfrum, NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures, Chemical Physics Letters, vol.307, issue.1-2, pp.15-20, 1999.
DOI : 10.1016/S0009-2614(99)00512-6

E. F. Overmars, N. G. Warncke, C. Poelma, and J. Westerweel, Bias errors in PIV: the pixel locking effect revisited, 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 2010.

N. J. Parziale, M. S. Smith, and E. C. Marineau, Krypton tagging velocimetry of an underexpanded jet, Applied Optics, vol.54, issue.16, pp.5094-5101, 2015.
DOI : 10.1364/AO.54.005094

P. Perrier, I. A. Graur, T. Ewart, and J. G. Meolans, Mass flow rate measurements in microtubes: From hydrodynamic to near free molecular regime, Physics of Fluids, vol.1, issue.4, pp.42004-042011, 2011.
DOI : 10.1116/1.582006

URL : https://hal.archives-ouvertes.fr/hal-01443385

J. Pitakarnnop, Analyse expérimentale et simulation numérique d'écoulements raréfiés de gaz simples et de mélanges gazeux dans les microcanaux, 2009.

J. Pitakarnnop, S. Varoutis, D. Valougeorgis, S. Geoffroy, L. Baldas et al., A novel experimental setup for gas microflows, Microfluidics and Nanofluidics, vol.472, issue.1, pp.57-72, 2010.
DOI : 10.1017/S0022112002002203

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.626.3049

L. A. Ribarov, J. A. Wehrmeyer, R. W. Pitz, and R. A. Yetter, Hydroxyl tagging velocimetry (HTV) in experimental air flows, Applied Physics B: Lasers and Optics, vol.74, issue.2, pp.175-183, 2002.
DOI : 10.1007/s003400100777

W. P. Robert, A. W. Joseph, A. R. Lubomir, A. O. Douglas, B. Farrokh et al., Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry, Measurement Science and Technology, vol.11, issue.9, p.1259, 2000.

K. Roetmann, W. Schmunk, C. Garbe, and V. Beushausen, Micro-flow analysis by molecular tagging velocimetry and planar Raman-scattering, Experiments in Fluids, vol.25, issue.17, pp.419-430, 2008.
DOI : 10.1007/s00348-002-0486-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.2257

F. Samouda, S. Colin, C. Barrot, L. Baldas, and J. Brandner, Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems, Microsystem Technologies, pp.1-11, 2013.
DOI : 10.1007/s10404-011-0822-5

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, A particle image velocimetry system for microfluidics, Experiments in Fluids, vol.25, issue.4, pp.316-319, 1998.
DOI : 10.1007/s003480050235

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.466

S. Hadj-mohand, H. , F. Samouda, C. Barrot, S. Colin et al., Investigation of laser induced phosphorescence and fluorescence of acetone at low pressure for molecular tagging velocimetry in gas microflows, 2014.

G. Silva, N. Leal, and V. Semiao, Micro-PIV and CFD characterization of flows in a microchannel: Velocity profiles, surface roughness and Poiseuille numbers, International Journal of Heat and Fluid Flow, vol.29, issue.4, pp.1211-1220, 2008.
DOI : 10.1016/j.ijheatfluidflow.2008.03.013

B. Stier and M. M. Koochesfahani, Molecular Tagging Velocimetry ( MTV ) measurements in gas phase flows, Experiments in Fluids, vol.26, issue.4, pp.297-304, 1999.
DOI : 10.1007/s003480050292

Y. Sugii and K. Okamoto, Velocity Measurement of Gas Flow Using Micro PIV Technique in Polymer Electrolyte Fuel Cell, ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels, Parts A and B, 2006.
DOI : 10.1115/ICNMM2006-96216

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics, Applied Optics, vol.37, issue.21, 1998.
DOI : 10.1364/AO.37.004963

M. C. Thurber and R. K. Hanson, Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm, Applied Physics B: Lasers and Optics, vol.69, issue.3, pp.229-240, 1999.
DOI : 10.1007/s003400050799

S. E. Turner, L. C. Lam, M. Faghri, and O. J. Gregory, Experimental Investigation of Gas Flow in Microchannels, Journal of Heat Transfer, vol.126, issue.5, pp.753-763, 2004.
DOI : 10.1115/1.1797036

P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de-vos et al., In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart, Journal of Biomechanics, vol.39, issue.7, pp.1191-1200, 2006.
DOI : 10.1016/j.jbiomech.2005.03.015

M. Wellhausen, G. Rinke, and H. Wackerbarth, Combined measurement of concentration distribution and velocity field of two components in a micromixing process, Microfluidics and Nanofluidics, vol.42, issue.6, pp.917-926, 2012.
DOI : 10.1146/annurev-fluid-121108-145427

S. T. Wereley and C. D. Meinhart, Recent Advances in Micro-Particle Image Velocimetry, Annual Review of Fluid Mechanics, vol.42, issue.1, pp.557-576, 2010.
DOI : 10.1146/annurev-fluid-121108-145427

Z. Xugang, C. Hongseok, D. Arindom, and L. Xiaochun, Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes, Journal of Micromechanics and Microengineering, vol.16, issue.5, p.900, 2006.

S. Y. Yoon, J. W. Ross, M. M. Mench, and K. V. Sharp, Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels, Journal of Power Sources, vol.160, issue.2, pp.1017-1025, 2006.
DOI : 10.1016/j.jpowsour.2006.02.043

D. Yu, X. Hu, C. Guo, T. Wang, X. Xu et al., Investigation on meniscus shape and flow characteristics in open rectangular microgrooves heat sinks with micro-PIV, Applied Thermal Engineering, vol.61, issue.2, pp.716-727, 2013.
DOI : 10.1016/j.applthermaleng.2013.08.042

Y. Zohar, S. Y. Lee, W. Y. Lee, L. Jiang, and P. I. Tong, Subsonic gas flow in a straight and uniform microchannel, Journal of Fluid Mechanics, vol.472, pp.125-151, 2002.
DOI : 10.1017/S0022112002002203

R. Basu, A. M. Naguib, and M. M. Koochesfahani, Feasibility study of whole-field pressure measurements in gas flows: molecular tagging manometry, Experiments in Fluids, vol.37, issue.1, pp.67-75, 2010.
DOI : 10.1007/BF00223244

A. Braeuer, F. Beyrau, and A. Leipertz, Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements, Applied Optics, vol.45, issue.20, pp.4982-4989, 2006.
DOI : 10.1364/AO.45.004982

R. A. Bryant, J. M. Donbar, and J. F. Driscoll, Acetone laser induced fluorescence for low pressure/low temperature flow visualization, Experiments in Fluids, vol.28, issue.5, pp.471-476, 2000.
DOI : 10.1007/s003480050407

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/42176/1/348-28-5-471_00280471.pdf

A. Charogiannis and F. Beyrau, Laser induced phosphorescence imaging for the investigation of evaporating liquid flows, Experiments in Fluids C7 -1518, pp.1-15, 2013.
DOI : 10.1016/j.combustflame.2010.06.004

O. Edward, H. Neall, and C. W. Larson, Primary Processes in the Acetone Photochemical System, The Journal of Phyaical Chemistry, vol.73, issue.4, 1969.

H. J. Groh, G. W. Luckey, and W. A. Noyes, The Mechanism of Acetone Vapor Fluorescence, The Journal of Chemical Physics, vol.21, issue.1, pp.115-118, 1953.
DOI : 10.1063/1.1746998

G. S. James, Lange's Handbook of Chemistry, 2004.

K. Jon and H. Ronald, A Photophysics Model for 3-pentanone PLIF: Temperature, Pressure, and Excitation Wavelength Dependences, 41st Aerospace Sciences Meeting and Exhibit, 2003.

W. E. Kaskan and A. B. Duncan, Mean Lifetime of the Fluorescence of Acetone and Biacetyl Vapors, The Journal of Chemical Physics, vol.122, issue.4, pp.427-431, 1950.
DOI : 10.1364/JOSA.37.000420

M. M. Koochesfahani and D. G. Nocera, Molecular tagging velocimetry, Spinger, 2007.

F. Samouda, . Phd, and T. Insa-toulouse-shimanouchi, Développement de la technique de Vélocimétrie par Marquage Moléculaire pour l'étude expérimentale des micro-écoulements gazeux, 1972.

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics, Applied Optics, vol.37, issue.21, pp.37-4963, 1998.
DOI : 10.1364/AO.37.004963

M. C. Thurber and R. K. Hanson, Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm, Applied Physics B: Lasers and Optics, vol.69, issue.3, pp.229-240, 1999.
DOI : 10.1007/s003400050799

T. Tran, Y. Kochar, and J. Seitzman, Measurements of Liquid Acetone Fluorescence and Phosphorescence for Two-Phase Fuel Imaging. 43rd Aerospace Sciences Meeting and Exhibit, 2005.

T. Tran, Y. Kochar, and J. Seitzman, Measurements of Acetone Fluorescence and Phosphorescence at High Pressures and Temperatures, 44th Aerospace Sciences Meeting and Exhibit. Nevada, 2006.
DOI : 10.2514/6.2006-831

J. Weinkauff, P. Trunk, J. H. Frank, M. J. Dunn, A. Dreizler et al., Investigation of flame propagation in a partially premixed jet by high-speed-Stereo-PIV and acetone-PLIF, Proceedings of the Combustion Institute, pp.3773-3781, 2015.
DOI : 10.1016/j.proci.2014.05.022

G. Bird, Molecular gas dynamics and the direct simulation of gas flows, 1994.

G. A. Bird, Recent advances and current challenges for DSMC, Computers & Mathematics with Applications, vol.35, issue.1-2, pp.1-14, 1998.
DOI : 10.1016/S0898-1221(97)00254-X

URL : http://doi.org/10.1016/s0898-1221(97)00254-x

D. Bruno, C. Catalfamo, A. Laricchiuta, D. Giordano, and M. Capitelli, Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma, Physics of Plasmas, vol.1, issue.7, p.72307, 2006.
DOI : 10.1063/1.1762005

C. Cercignani, The Boltzmann Equation and Its Applications, 1988.
DOI : 10.1007/978-1-4612-1039-9

F. Chen, H. Li, and H. Hu, Molecular tagging techniques and their applications to the study of complex thermal flow phenomena, Acta Mechanica Sinica, vol.50, issue.4, pp.425-445, 2015.
DOI : 10.1007/s00348-010-0952-7

J. Crank, The mathematics of diffusion Clarendon press, 1975.

N. Dongari, A. Sharma, and F. Durst, Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes, Microfluidics and Nanofluidics, vol.44, issue.12, pp.679-692, 2009.
DOI : 10.1109/84.585795

J. R. Elsnab, Mean velocity profile in a high aspect ratio microchannel PHD, 1972.

W. E. Kaskan and A. B. Duncan, Mean Lifetime of the Fluorescence of Acetone and Biacetyl Vapors, The Journal of Chemical Physics, vol.122, issue.4, pp.427-431, 1950.
DOI : 10.1364/JOSA.37.000420

P. D. Neufeld, A. R. Janzen, and R. A. Aziz, for the Lennard???Jones (12???6) Potential, The Journal of Chemical Physics, vol.57, issue.3, pp.1100-1102, 1972.
DOI : 10.1063/1.1743829

B. E. Poling, J. M. Prausnitz, and J. P. , The properties of gases and liquids, 2000.

F. Samouda, S. Colin, C. Barrot, L. Baldas, and J. Brandner, Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems, Microsystem Technologies, vol.11, issue.5, pp.527-537, 2015.
DOI : 10.1007/s10404-011-0822-5

F. Schembri, H. Bodiguel, and A. Colin, Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions, Soft Matter, vol.204, issue.1, pp.169-178, 2015.
DOI : 10.1016/S0378-5173(00)00478-6

C. Shen, Rarefied Gas Dynamics Fundamentals, Simulations and Micro Flows, 2005.

T. Veltzke, M. Baune, and J. Thoming, The contribution of diffusion to gas microflow: An experimental study, Physics of Fluids, vol.24, issue.8, p.82004, 2012.
DOI : 10.1063/1.3562948

A. Venkattraman, A. A. Alexeenko, M. A. Gallis, and M. S. Ivanov, A comparative study of no-timecounter and majorant collision frequency numerical schemes in DSMC, AIP Conference Proceedings, vol.1501, issue.1, pp.489-495, 2012.

J. R. Elsnab, Mean velocity profile in a high aspect ratio microchannel PHD Computational Methods for Fluid Dynamics, 2002.

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows, Experiments in Fluids, vol.37, issue.3, pp.403-411, 2003.
DOI : 10.1364/AO.37.004963

P. D. Neufeld, A. R. Janzen, and R. A. Aziz, for the Lennard???Jones (12???6) Potential, The Journal of Chemical Physics, vol.57, issue.3, pp.1100-1102, 1972.
DOI : 10.1063/1.1743829

B. E. Poling, J. M. Prausnitz, and J. P. , The properties of gases and liquids, 2000.

F. Samouda, . Phd, F. Insa-toulouse-samouda, S. Colin, C. Barrot et al., Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems, Microsystem Technologies, vol.11, issue.5, pp.527-537, 2012.
DOI : 10.1007/s10404-011-0822-5

M. Spiga and G. L. Morini, A symmetric solution for velocity profile in laminar flow through rectangular ducts, International Communications in Heat and Mass Transfer, vol.21, issue.4, pp.469-475, 1994.
DOI : 10.1016/0735-1933(94)90046-9