G. Dupupet, Fibres de carbone, am5134. www.techniques-ingenieur.fr, 2008.

M. Onishi, Toray's strategy for carbon fiber composite materials Rapport technique, p.2012

M. Chatain, Matières thermoplastiques -introduction, 1998.

B. Bitsch, Amélioration des thermoplastiques -rôle du compoundeur, 2003.

E. C. Botelho, L. Figiel, and M. C. Rezende, Mechanical behavior of carbon fiber reinforced polyamide composites, Composites Science and Technology, vol.63, issue.13, pp.1843-1855, 2003.
DOI : 10.1016/S0266-3538(03)00119-2

J. L. Thomason and M. A. , Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus, Composites Part A: Applied Science and Manufacturing, vol.27, issue.6, pp.477-484, 1996.
DOI : 10.1016/1359-835X(95)00065-A

A. Hassan, P. R. Hornsby, and M. J. , Structure???property relationship of injection-molded carbon fibre-reinforced polyamide 6,6 composites: the effect of compounding routes, Polymer Testing, vol.22, issue.2, pp.185-189, 2003.
DOI : 10.1016/S0142-9418(02)00068-5

S. Fu and L. Bernd, Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers, Composites Science and Technology, vol.56, issue.10, pp.1179-1190, 1996.
DOI : 10.1016/S0266-3538(96)00072-3

D. Gay, Matériaux composites -5ème édition révisée, Hermes Sciences, 2005.

M. R. Mili, T. Bouchaour, and P. Merle, Estimation of Weibull parameters from loose-bundle tests, Composites Science and Technology, vol.56, issue.7, pp.831-834, 1996.
DOI : 10.1016/0266-3538(96)00028-0

M. R. Mili and M. Murat, Caractérisation des fibres par amélioration de l'essai sur mèches avec mesure directe de la déformation, C.R. Acad. Sci. Paris, vol.324, pp.355-364, 1997.

R. L. Clark-jr, R. G. Kander, and B. Sauer, Nylon 66/poly(vinyl pyrrolidone) reinforced composites : 1. interphase microstructure and evaluation of fiber-matrix adhesion, Composites : Part. A, vol.30, pp.29-36, 1999.

T. H. Cheng, J. Zhang, S. Yumitori, F. R. Jones, and C. W. , Sizing resin structure and interphase formation in carbon fibre composites, Composites, vol.25, issue.7, pp.661-670, 1994.
DOI : 10.1016/0010-4361(94)90199-6

A. Bergeret and P. Krawczak, Liaison renfort/matrice -définition et caractérisation, 2006.

C. Ageorges, K. Firedrich, T. Schüller, and B. Lauke, Single-fibre Broutman test: fibre???matrix interface transverse debonding, Composites Part A: Applied Science and Manufacturing, vol.30, issue.12, pp.1423-1434, 1999.
DOI : 10.1016/S1359-835X(99)00045-7

X. Dirand, Etude des interfaces et interphases verre/résine vinylester, Thèse de doctorat, 1994.

D. Rouby, Transfert de charge à l'interface fibre-matrice (aspects mécaniques)

A. Hampe, G. Kalinka, S. Meretz, and E. Schulz, An advanced equipment for single-fibre pull-out test designed to monitor the fracture process, Composites, vol.26, issue.1, 1995.
DOI : 10.1016/0010-4361(94)P3628-E

C. , D. Francia, T. C. Ward, and R. O. Claus, The single-fibre pull-out test. 1 : review and interpretation, Composites : Part. A, vol.27, pp.597-612, 1996.

A. F. Kalton, S. J. Howard, J. Janczak-rusch, and T. W. , Measurement of interfacial fracture energy by single fibre push-out testing and its application to the titanium???silicon carbide system, Acta Materialia, vol.46, issue.9, pp.3175-3189, 1998.
DOI : 10.1016/S1359-6454(98)00009-3

W. Song, A. Gu, G. Liang, and L. Yuan, Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites, Applied Surface Science, vol.257, issue.9, pp.4069-4074, 2011.
DOI : 10.1016/j.apsusc.2010.11.177

K. K. Ho, A. F. Lee, S. Lamoriniere, and A. Bismarck, Continuous atmospheric plasma fluorination of carbon fibres, Composites Part A: Applied Science and Manufacturing, vol.39, issue.2, pp.364-373, 2008.
DOI : 10.1016/j.compositesa.2007.10.008

Z. Xu, L. Chen, Y. Huang, J. Li, X. Wu et al., Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy, European Polymer Journal, vol.44, issue.2, pp.494-503, 2010.
DOI : 10.1016/j.eurpolymj.2007.11.021

S. Zhandarov and E. Mäder, Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters, Composites Science and Technology, vol.65, issue.1, pp.149-160, 2005.
DOI : 10.1016/j.compscitech.2004.07.003

J. Xie, D. Xin, H. Cao, C. Wang, Y. Zhao et al., Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment, Surface and Coatings Technology, vol.206, issue.2-3, pp.191-201, 2011.
DOI : 10.1016/j.surfcoat.2011.04.016

C. U. Pittman, G. He, B. Wu, and S. D. Gardner, Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon, vol.35, issue.3, pp.317-331, 1997.
DOI : 10.1016/S0008-6223(97)89608-X

M. C. Paiva and C. A. Bernardo, Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres, Carbon, vol.38, issue.9, pp.1323-1337, 2000.
DOI : 10.1016/S0008-6223(99)00266-3

M. A. Montes-moran, F. W. Van-hattum, J. P. Nunes, A. Martínez-alonso, J. M. Tascón et al., Bernardo : A study of the effect of plasma treatment on the interfacial properties of carbon fibre/thermoplastic composites, Carbon, vol.43, pp.1778-1814, 2005.

J. Li and Y. C. Xia, Interfacial studies of polyamide 6 composites filled with oxidation carbon fiber, Indian Journal of Engineering and Materials Science, vol.16, pp.319-325, 2009.

A. Bismarck, M. E. Kumru, J. Springer, and J. , Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems, Applied Surface Science, vol.143, issue.1-4, pp.45-55, 1999.
DOI : 10.1016/S0169-4332(98)00929-5

G. Zanella and P. Lucas, Mise en oeuvre des composites tp -compounds à fibres longues et courtes, 2007.

A. Chevalier and F. Berbain, Mise en oeuvre des composites -méthodes et matériels, 1997.

N. Jiang, Fabrication and evaluation of specialty nonwoven materials, Thèse de doctorat, 2008.

P. Lucas and G. Zanella, Mise en oeuvre des composites tp -compounds à fibres courtes et longues, 2007.

P. Ouagne, L. Bizet, C. Baley, and J. Bréard, Analysis of the Film-stacking Processing Parameters for PLLA/Flax Fiber Biocomposites, Journal of Composite Materials, vol.19, issue.2, pp.1201-1215, 2010.
DOI : 10.1016/j.compositesa.2007.03.002

J. Palmer, L. Savage, O. R. Ghita, and K. E. Evans, Sheet moulding compound (SMC) from carbon fibre recyclate, Composites Part A: Applied Science and Manufacturing, vol.41, issue.9, pp.1232-1237, 2010.
DOI : 10.1016/j.compositesa.2010.05.005

T. Flemming, G. Kress, and M. Flemming, A new aligned short-carbon-fiber-reinforced thermoplastic prepreg, Advanced Composite Materials, vol.9, issue.2, pp.151-159, 1996.
DOI : 10.1002/pc.750090105

A. K. Salariya and J. F. Pittman, Preparation of aligned discontinuous fiber pre-pregs by deposition from a suspension, Polymer Engineering and Science, vol.253, issue.12, pp.787-797, 1980.
DOI : 10.1098/rspa.1959.0195

T. D. Papathanasiou and D. C. , Guell : Flow-induced alignment in composite materials, 1997.
DOI : 10.1201/9781439822739

URL : https://www.sciencedirect.com/science?_ob=PdfExcerptURL&_imagekey=3-s2.0-B9781855732544500054-main.pdf&_piikey=B9781855732544500054&_cdi=307586&_orig=PublicationURL&_zone=rslt_list_item&_fmt=abst&_eid=3-s2.0-B9781855732544500054&_isbn=9781855732544&_user=12975512&md5=991e364eac48914ddf0342aa6d72d8e2&ie=/excerpt.pdf

K. H. Wong, T. A. Turner, S. J. Pickering, and N. A. , The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre, SAE International Journal of Aerospace, vol.2, issue.1, pp.225-231, 2009.
DOI : 10.4271/2009-01-3237

T. A. Turner, S. J. Pickering, and N. A. , Warrior : Development of high value composite materials using recycled carbon fibre, SAMPE 09 Conference, 2009.

H. Yu, K. D. Potter, and M. R. Wisnom, Aligned short fibre composites with high performance, The 19th International Conferences on Composite Materials, 2013.

P. Krawczak, Recyclage des composites, am5895. www.techniques-ingenieur.fr, 2011.

T. Sako, I. Okajima, T. Sugeta, K. Otake, S. Yoda et al., Recovery of Constituent Monomers from Polyethylene Terephthalate with Supercritical Methanol, Polymer Journal, vol.55, issue.2, pp.178-181, 2000.
DOI : 10.1295/koron.55.685

M. Genta, M. Goto, and M. Sasaki, Heterogeneous continuous kinetics modeling of PET depolymerization in supercritical methanol, The Journal of Supercritical Fluids, vol.52, issue.3, pp.266-275, 2010.
DOI : 10.1016/j.supflu.2010.01.007

H. Jie, Z. Qing, H. Ke, C. Lei, and W. , Study on depolymerization of polycarbonate in supercritical ethanol, Polymer Degradation and Stability, vol.91, issue.10, pp.2307-2314, 2006.
DOI : 10.1016/j.polymdegradstab.2006.04.012

J. Huang, J. Yang, M. K. Chyu, and Q. Wang, Continuous-distribution kinetics for degradation of polybutylene terephthalate (PBT) in supercritical methanol, Polymer Degradation and Stability, vol.94, issue.12, pp.2142-2148, 2009.
DOI : 10.1016/j.polymdegradstab.2009.09.011

R. Pinero-hernanz, Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions, The Journal of Supercritical Fluids, vol.46, issue.1, pp.83-92, 2008.
DOI : 10.1016/j.supflu.2008.02.008

G. Jiang, S. J. Pickering, E. H. Lester, T. A. Turner, K. H. Wong et al., Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol, Composites Science and Technology, vol.69, issue.2, pp.192-198, 2009.
DOI : 10.1016/j.compscitech.2008.10.007

J. R. Hyde, E. Lester, S. Kingman, K. H. Pickering, and . Wong, Supercritical propanol, a possible route to composite carbon fibre recovery: A viability study, Composites Part A: Applied Science and Manufacturing, vol.37, issue.11, pp.2171-2175, 2006.
DOI : 10.1016/j.compositesa.2005.12.006

R. Pinero-hernanz, C. Dodds, J. Hyde, J. Garcia-serna, M. J. Cocero et al., Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water, Composites Part A: Applied Science and Manufacturing, vol.39, issue.3, pp.454-461, 2008.
DOI : 10.1016/j.compositesa.2008.01.001

L. Yuyan, S. Guohua, and M. Linghui, Recycling of carbon fibre reinforced composites using water in subcritical conditions, Materials Science and Engineering: A, vol.520, issue.1-2, pp.179-183, 2009.
DOI : 10.1016/j.msea.2009.05.030

E. , L. Gal-la-salle, G. Oliveux, and J. Bailleul, Chemical recycling of glass fibre reinforced composites using subcritical water, Composites : part A, vol.43, pp.1809-1818, 2012.

W. Dang, M. Kubouchi, S. Yamamoto, and H. Sembokuya, An approach to chemical recycling of epoxy resin cured with amine using nitric acid, Polymer, vol.43, issue.10, pp.2953-2958, 2002.
DOI : 10.1016/S0032-3861(02)00100-3

K. Gersifi and G. Durand, Solvolysis of bisphenol A diglycidyl ether/anhydride model networks, Polymer Degradation and Stability, vol.91, issue.4, pp.690-702, 2006.
DOI : 10.1016/j.polymdegradstab.2005.05.021

URL : https://hal.archives-ouvertes.fr/hal-00133313

C. Morin, A. Loppinet-serani, F. Cansell, and C. , Near- and supercritical solvolysis of carbon fibre reinforced polymers (CFRPs) for recycling carbon fibers as a valuable resource: State of the art, The Journal of Supercritical Fluids, vol.66, pp.232-240, 2012.
DOI : 10.1016/j.supflu.2012.02.001

X. Buch, Dégradation thermique et fluage d'un adhésif structural époxyde, Thèse de doctorat, 2000.

G. Antonini and M. Hazi, Pyrolyse-gazéification de déchets solides. partie 1 : état de l'art des procédés existants, 2004.

S. Ye, Y. Soudais, and R. Barna, A comparative study between pyrolysis and steam-thermolysis for recycling cfrp waste, Polymer Degradation and Stability, p.page Manuscript Draft, 2011.

M. H. Akonda, C. A. Lawrence, and B. M. Weager, Recycled carbon fibre-reinforced polypropylene thermoplastic composites, Composites Part A: Applied Science and Manufacturing, vol.43, issue.1, pp.79-86, 2012.
DOI : 10.1016/j.compositesa.2011.09.014

S. Pimenta, S. T. Pinho, P. Robinson, K. H. Wong, and S. J. Pickering, Mechanical analysis and toughening mechanisms of a multiphase recycled CFRP, Composites Science and Technology, vol.70, issue.12, pp.1713-1725, 2010.
DOI : 10.1016/j.compscitech.2010.06.017

M. A. Nahil and P. T. Williams, Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres, Journal of Analytical and Applied Pyrolysis, vol.91, issue.1, pp.67-75, 2011.
DOI : 10.1016/j.jaap.2011.01.005

E. Lester, S. Kingman, K. H. Wong, C. Rudd, S. Pickering et al., Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study, Materials Research Bulletin, vol.39, issue.10, pp.1549-1556, 2004.
DOI : 10.1016/j.materresbull.2004.04.031

S. J. Pickering, R. M. Kelly, J. R. Kennerley, C. D. Rudd, and N. J. Fenwick, A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites, Composites Science and Technology, vol.60, issue.4, pp.509-523, 2000.
DOI : 10.1016/S0266-3538(99)00154-2

J. R. Kennerly, R. M. Kelly, N. J. Fenwick, S. J. Pickering, and C. D. Rudd, The characterisation and reuse of glass fibres recycled from scrap composites by the action of a fluidised bed process, Composites Part A: Applied Science and Manufacturing, vol.29, issue.7, pp.839-845, 1998.
DOI : 10.1016/S1359-835X(98)00008-6

S. Pimenta and S. T. Pinho, Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook, Waste Management, vol.31, issue.2, pp.378-392, 2011.
DOI : 10.1016/j.wasman.2010.09.019

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/12678/2/2011%20Pimenta%20and%20Pinho%20-%20Recycling%20carbon%20fibre%20reinforced%20polymers%20for%20structural%20applications%20-%20technology%20review%20and%20market%20outlook.pdf

C. P. Beetz, The analysis of carbon fibre strength distributions exhibiting multiple modes of failure, Fibre Science and Technology, vol.16, issue.1, pp.45-59, 1982.
DOI : 10.1016/0015-0568(82)90015-X

T. Jung, R. V. Subramanian, and V. S. Manoranjan, Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths, Journal of Materials Science, vol.10, issue.16, pp.4489-4496, 1993.
DOI : 10.1007/BF01154961

H. Rennhofer, M. Müller, H. Peterlik, D. Loidl, and O. , Paris : Skin-core structure and bimodal weibull distribution of the strength of carbon fibers, Carbon, vol.45, pp.2801-2805, 2007.

B. Pierre, Etude du résidu carboné et de la liaison fibre-matrice lors de la pyrolyse de composites carbone-phénolique, Thèse de doctorat, 2004.

P. Zinck, Sample size dependence of flaw distributions for the prediction of brittle solids strength using additive Weibull bimodal distributions, Engineering Fracture Mechanics, vol.78, issue.6, pp.1323-1327, 2011.
DOI : 10.1016/j.engfracmech.2010.09.019

D. Loidl and H. , Peterlik : Bimodal strength distributions and flaw populations of ceramics and fibres, Engineering fracture Mechanics, vol.68, pp.253-262, 2001.

A. A. Griffith, The theory of rupture, Proc. First International Congress Applied Mechanics (Delft), pp.55-63, 1924.

J. L. Thomason, On the application of Weibull analysis to experimentally determined single fibre strength distributions, Composites Science and Technology, vol.77, pp.74-80, 2013.
DOI : 10.1016/j.compscitech.2013.01.009

M. R. Mili, N. Godin, and J. , Lamon : Flaw strength distributions and statistical parameters for ceramic fibers : the normal distribution, Physical Review E, vol.85, 2012.

J. Ding, P. Xu, and J. Li, Chemical recycling of carbon fiber/epoxy composites in a mixed solution of peroxide hydrogen and n,n-dimethylformamide, Composites Science and Technology, vol.82, pp.54-59, 2013.

P. T. Williams, E. Yildirir, and J. A. Onwudili, Recovery of carbon fibres and production of high quality fuel gas fromthe chemical recycling of carbon fibre reinforced plastic wastes, The Journal of Supercritical Fluids, vol.92, pp.107-114, 2014.

J. Liub, W. Liua, J. Wanga, T. Tangb, and J. Yanga, b : Recycling of carbon fibre reinforced epoxy resin composites undervarious oxygen concentrations in nitrogen/oxygen atmosphere, Journal of Analytical and Applied Pyrolysis, 2015.

B. D. Coleman, On the strength of classical fibres and fibre bundles, Journal of the Mechanics and Physics of Solids, vol.7, issue.1, pp.60-70, 1958.
DOI : 10.1016/0022-5096(58)90039-5

M. R. Mili, M. Moevus, and N. Godin, Statistical fracture of e-glass fibres using a bundle tensile test and acoustic emission monitoring, Composites Science and Technology, vol.68, pp.1800-1808, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00563499

M. R. Mili and J. Lamon, Investigation of subcritical crack growth using load relaxation tests on fiber bundles, Acta mater, vol.59, pp.2850-2857, 2011.

M. R. Mili, V. Massardier, P. Merle, H. Vincent, and C. Vincent, The effect of thermal exposure on the strength distribution of B4C coated carbon fibers, Carbon, vol.37, issue.1, pp.129-145, 1999.
DOI : 10.1016/S0008-6223(98)00197-3

URL : https://hal.archives-ouvertes.fr/hal-01670042

. Nf-en-iso, Fibres de carbone -détermination des propriétés en traction sur fils imprégnés de résine, 2005.

N. Perry, O. Manteaux, D. Leray, and T. Lorriot, Composite recycling : design for environmental approach requirements, Proceedings of IDMME -Virtuel Concept, 2010.

K. Stoeffler, S. Andjelic, N. Legros, J. Roberge, and S. B. Schougaard, Polyphenylene sulfide (PPS) composites reinforced with recycled carbon fiber, Composites Science and Technology, vol.84, 2013.
DOI : 10.1016/j.compscitech.2013.05.005

N. Feng, X. Wang, and D. Wu, Surface modification of recycled carbon fiber??and its reinforcement effect on nylon 6 composites: Mechanical properties, morphology and??crystallization behaviors, Current Applied Physics, vol.13, issue.9, pp.2038-2050, 2013.
DOI : 10.1016/j.cap.2013.09.009

H. Han, X. Wang, and D. Wu, Preparation, crystallization behaviors, and mechanical properties of biodegradable composites based on poly(L-lactic acid) and recycled carbon fiber, Composites Part A: Applied Science and Manufacturing, vol.43, issue.11, pp.1947-1958, 2012.
DOI : 10.1016/j.compositesa.2012.06.014

H. Han, X. Wang, and D. Wu, Mechanical properties, morphology and crystallization kinetic studies of bio-based thermoplastic composites of poly(butylene succinate) with recycled carbon fiber, Journal of Chemical Technology & Biotechnology, vol.33, issue.7, pp.1200-1211, 2013.
DOI : 10.1016/S0014-3057(96)00159-0

Y. Chen, X. Wang, and D. Wu, Recycled carbon fiber reinforced poly(butylene terephthalate) thermoplastic composites: fabrication, crystallization behaviors and performance evaluation, Polymers for Advanced Technologies, vol.95, issue.4, pp.364-375, 2013.
DOI : 10.1016/j.polymdegradstab.2009.12.011

J. M. Park, D. J. Kwon, Z. J. Wang, G. Y. Gu, and K. L. Devries, Effect of thermal treatment temperatures on the reinforcing and interfacial properties of recycled carbon fiber???phenolic composites, Composites Part A: Applied Science and Manufacturing, vol.47, pp.156-164, 2013.
DOI : 10.1016/j.compositesa.2012.12.002

S. Pimenta and S. T. Pinho, The effect of recycling on the mechanical response of carbon fibres and their composites, Composite Structures, vol.94, issue.12, pp.3669-3684, 2012.
DOI : 10.1016/j.compstruct.2012.05.024

T. A. Turner, S. J. Pickering, and N. A. , Development of recycled carbon fibre moulding compounds ??? Preparation of waste composites, Composites Part B: Engineering, vol.42, issue.3, pp.517-525, 2011.
DOI : 10.1016/j.compositesb.2010.11.010

K. Giannadakis, M. Szpieg, and J. Varna, Mechanical Performance of a Recycled Carbon Fibre/PP Composite, Experimental Mechanics, vol.30, issue.1, pp.767-777, 2010.
DOI : 10.1016/S1359-835X(98)00185-7

R. A. Witik, R. Teuscher, V. Michaud, C. Ludwig, and J. A. Manson, Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling, Composites Part A: Applied Science and Manufacturing, vol.49, pp.89-99, 2013.
DOI : 10.1016/j.compositesa.2013.02.009

S. Das, Life cycle assessment of carbon fiber-reinforced polymer composites, The International Journal of Life Cycle Assessment, vol.February, issue.8, pp.268-282, 2011.
DOI : 10.1016/S0045-6535(03)00294-7

.. Références-bibliographiques-du-chapitre-2, J. Wang, S. Molimard, and A. Drapier, Vautrin et P. Henrat : Suivi du procédé de la fabrication liquid resin infusion (lri) sur simulateur industriel par capteurs distribués, JNC16, vol.88, issue.1, p.France, 2009.

B. D. Coleman, Time Dependence of Mechanical Breakdown Phenomena, Journal of Applied Physics, vol.41, issue.8, p.862, 1956.
DOI : 10.1017/S0305004100015681

S. Ye, Valorisation de déchets composites à matrice polymérique renforcés de fibres de carbone par un procédé de vapo-thermolyse, Thèse de doctorat, 2012.

T. M. Duc, Analyse de surface par esca -principe et instrumentation, 1998.

G. Amand and J. Martin, Traité des matériaux -Tome 3, Caractérisation expérimentale des matériaux : analyse par rayons X, électrons et neutrons, 1998.

N. Hellala, Synthèse et Caractérisation chimique de cristaux et films de diamant par dépôt chimique en phase vapeur assisté par plasma micro-ondes, Thèse de doctorat, 2006.

D. Landolt, Traité des matériaux -Volume 12 -Chimie et corrosion de surfaces des métaux, 1997.

L. Sun and F. Meunier, Adsorption -aspects théoriques, 2003.

M. R. Mili, T. Bouchaour, and P. Merle, Estimation of Weibull parameters from loose-bundle tests, Composites Science and Technology, vol.56, issue.7, pp.831-834, 1996.
DOI : 10.1016/0266-3538(96)00028-0

M. R. Mili and M. Murat, Caractérisation des fibres par amélioration de l'essai sur mèches avec mesure directe de la déformation, C.R. Acad. Sci. Paris, vol.324, pp.355-364, 1997.

S. Zhandarov and E. Mäder, Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters, Composites Science and Technology, vol.65, issue.1, pp.149-160, 2005.
DOI : 10.1016/j.compscitech.2004.07.003

D. Tripathi and F. R. Jones, Review : Single fibre fragmentation test for assessing adhesion in fibre reinforced composites, Journal of Materials Science, vol.33, issue.1, pp.1-16, 1998.
DOI : 10.1023/A:1004351606897

J. Favre and D. Jacques, Stress transfer by shear in carbon fibre model composites, Journal of Materials Science, vol.16, issue.2, pp.1373-1380, 1990.
DOI : 10.1080/00218468308074911

T. Ohsawa, O. Nakayama, M. Miwa, and A. Hasegawa, Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins, Journal of Applied Polymer Science, vol.22, issue.11, pp.3203-3212, 1978.
DOI : 10.1002/app.1978.070221115

S. Erden, K. K. Ho, S. Lamoriniere, A. F. Lee, H. Yildiz et al., Continuous Atmospheric Plasma Oxidation of Carbon Fibres: Influence on the Fibre Surface and Bulk Properties and Adhesion to Polyamide 12, Plasma Chemistry and Plasma Processing, vol.46, issue.4, pp.471-487, 2010.
DOI : 10.1007/978-0-387-21656-0

M. A. Montes-moran, A. Martinez-alonso, J. M. Tascón, and R. J. Young, Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres, Composites Part A: Applied Science and Manufacturing, vol.32, issue.3-4, pp.361-371, 2001.
DOI : 10.1016/S1359-835X(00)00109-3

B. Guérin, Polyamides pa, a3360. www.techniques-ingenieur.fr, 1994.

C. Paris, Etude et modélisation de la polymérisation dynamique de composites à matrice thermodurcissable, Thèse de doctorat, 2011.

E. Bessard, Matériaux composites structuraux à base PEEK élaborés par thermocompression dynamique : relation procédé-propriétés, Thèse de doctorat, 2012.

O. Ishida, W. Okumura, H. Saito, M. Kimizu, and K. , Uzawa et I. Kimpara : Effects of press molding conditions on impregnation and mechanical properties of carbon fiber fabric/pa-6 film composite, 19th International Conferences on Composite Materials, 2013.

L. High-performance-thermoplastics, Latamid 66 h2 k/20 | compound based on polyamide 66 (pa 66). heat stabilised. carbon fibre. Rapport technique, 2009.

T. H. Le, P. J. Dumont, L. Orgéas, and L. Salvi, X-ray phase contrast microtomography for the analysis of the fibrous microstructure of SMC composites, Composites Part A: Applied Science and Manufacturing, vol.39, issue.1, pp.91-103, 2008.
DOI : 10.1016/j.compositesa.2007.08.027

URL : https://hal.archives-ouvertes.fr/hal-00374957

A. Megally, Etude et modélisation de l'orientation de fibres dans des thermoplastiques renforcés, Thèse de doctorat, 2005.

P. A. O-'connell and R. A. , Measurements of fibre orientation in short-fibre-reinforced thermoplastics, Composites Science and Technology, vol.42, issue.4, pp.329-347, 1991.
DOI : 10.1016/0266-3538(91)90061-S

S. G. Advani and C. L. Tucker, The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites, Journal of Rheology, vol.31, issue.8, pp.751-784, 1987.
DOI : 10.1122/1.549945

G. Zak, C. B. Park, and B. Benhabib, Estimation of Three-Dimensional Fibre-Orientation Distribution in Short-Fibre Composites by a Two-Section Method, Journal of Composite Materials, vol.35, issue.4, pp.316-339, 2001.
DOI : 10.1177/002199839703101302

B. Watrisse, A. Chrysochoos, J. Muracciole, and M. Némoz-gaillard, Analysis of strain localization during tensile tests by digital image correlation, Experimental Mechanics, vol.37, issue.1, pp.29-39, 2001.
DOI : 10.1007/BF02323101

P. Clerc, Mesure de champs de déplacements et de déformations par stéréovision et corrélation d'images numériques, Thèse de doctorat, Institut national des sciences appliquées de Lyon, 2001.

J. Orteu, Mesure 3d de formes et de déformations par stéréovision, 2002.

S. Mguil-touchal, F. Morestin, and M. Brunet, Various experimental applications of digital image correlation method, 1997.

F. Application-d-'un-traitement-de-surface-oxydant-sur-la-fibre, 121 II.3.2 Modifications physico-chimiques induites par un traitement de surface oxydant, p.122

S. Pimenta and S. T. Pinho, The effect of recycling on the mechanical response of carbon fibres and their composites, Composite Structures, vol.94, issue.12, pp.3669-3684, 2012.
DOI : 10.1016/j.compstruct.2012.05.024

G. Jiang, S. J. Pickering, E. H. Lester, T. A. Turner, K. H. Wong et al., Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol, Composites Science and Technology, vol.69, issue.2, pp.192-198, 2009.
DOI : 10.1016/j.compscitech.2008.10.007

D. Rouby, Résistance mécanique des solides fragiles. statistique de weibull, 2005.

G. Oliveux, J. Bailleul, E. Le-gal, and L. Salle, Chemical recycling of glass fibre reinforced composites using subcritical water, Composites Part A: Applied Science and Manufacturing, vol.43, issue.11, pp.1809-1818, 2012.
DOI : 10.1016/j.compositesa.2012.06.008

S. Deng, L. Ye, Y. Mai, and H. Liu, Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests, Composites Part A: Applied Science and Manufacturing, vol.29, issue.4, pp.423-434, 1998.
DOI : 10.1016/S1359-835X(97)00094-8

R. Pinero-hernanz, Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions, The Journal of Supercritical Fluids, vol.46, issue.1, pp.83-92, 2008.
DOI : 10.1016/j.supflu.2008.02.008

C. P. Beetz, The analysis of carbon fibre strength distributions exhibiting multiple modes of failure, Fibre Science and Technology, vol.16, issue.1, pp.45-59, 1982.
DOI : 10.1016/0015-0568(82)90015-X

T. Jung, R. V. Subramanian, and V. S. Manoranjan, Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths, Journal of Materials Science, vol.10, issue.16, pp.4489-4496, 1993.
DOI : 10.1007/BF01154961

D. Loidl, O. Paris, H. Rennhofer, and M. Müller, Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers, Carbon, vol.45, issue.14, pp.2801-2805, 2007.
DOI : 10.1016/j.carbon.2007.09.011

R. Danzer, Some notes on the correlation between fracture and defect statistics: Are Weibull statistics valid for very small specimens?, Journal of the European Ceramic Society, vol.26, issue.15, pp.3043-3049, 2006.
DOI : 10.1016/j.jeurceramsoc.2005.08.021

P. Zinck, Sample size dependence of flaw distributions for the prediction of brittle solids strength using additive Weibull bimodal distributions, Engineering Fracture Mechanics, vol.78, issue.6, pp.1323-1327, 2011.
DOI : 10.1016/j.engfracmech.2010.09.019

. L. El, J. B. Asloun, G. Donnet, M. Guilpain, J. Nardin et al., On the estimation of the tensile strength of carbon fibres at short lengths, Journal of Materials Science, vol.24, pp.3504-3510, 1989.

J. L. Thomason, On the application of Weibull analysis to experimentally determined single fibre strength distributions, Composites Science and Technology, vol.77, pp.74-80, 2013.
DOI : 10.1016/j.compscitech.2013.01.009

M. R. Mili, N. Godin, and J. , Lamon : Flaw strength distributions and statistical parameters for ceramic fibers : the normal distribution, Physical Review E, vol.85, 2012.

T. Tagawa and T. Miyata, Size effect on tensile strength of carbon fibers, Materials Science and Engineering: A, vol.238, issue.2, pp.336-342, 1997.
DOI : 10.1016/S0921-5093(97)00454-1

M. R. Mili, M. Moevus, and N. Godin, Statistical fracture of e-glass fibres using a bundle tensile test and acoustic emission monitoring, Composites Science and Technology, vol.68, pp.1800-1808, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00563499

I. Krucinska and W. Zurek, The influence of fibre irregularity on the tensile properties of carbon and glass fibres, Composites Science and Technology, vol.54, issue.2, pp.169-175, 1995.
DOI : 10.1016/0266-3538(95)00047-X

T. Ohsawa, A. Nakayama, M. Miwa, and A. Hasegawa, Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins, Journal of Applied Polymer Science, vol.22, issue.11, pp.3203-3212, 1978.
DOI : 10.1002/app.1978.070221115

S. Dai and M. R. Piggott, The strengths of carbon and kevlar fibres as a function of their lengths, Composites Science and Technology, vol.49, issue.1, pp.81-87, 1993.
DOI : 10.1016/0266-3538(93)90024-B

S. Erden, K. K. Ho, S. Lamoriniere, A. F. Lee, H. Yildiz et al., Continuous Atmospheric Plasma Oxidation of Carbon Fibres: Influence on the Fibre Surface and Bulk Properties and Adhesion to Polyamide 12, Plasma Chemistry and Plasma Processing, vol.46, issue.4, pp.471-487, 2010.
DOI : 10.1007/978-0-387-21656-0

N. Feng, X. Wang, and D. Wu, Surface modification of recycled carbon fibre and its reinforcement effect on nylon 6 composites : mechanical properties, morphology and crystallization behaviors, Current Applied Physics, 2013.

M. J. Pitkethly, J. P. Favre, U. Gaur, J. Jakubowski, S. F. Mudrich et al., A round-robin programme on interfacial test methods, Composites Science and Technology, vol.48, issue.1-4, pp.205-214, 1993.
DOI : 10.1016/0266-3538(93)90138-7

X. Zhou, H. D. Wagner, and S. R. Nutt, Interfacial properties of polymer composites measured by push-out and fragmentation tests, Composites Part A: Applied Science and Manufacturing, vol.32, issue.11, pp.1543-1551, 2001.
DOI : 10.1016/S1359-835X(01)00018-5

M. Nardin and J. Schultz, Effect of elastic moduli and interfacial adhesion energy on the critical fibre aspect ratio in single-fibre composites, Journal of Materials Science Letters, vol.2, issue.16, pp.1245-1247, 1993.
DOI : 10.1007/BF00506324

J. Azaïs and J. Bardet, Le modèle linéaire par l'exemple : régression, analyse de la variance et plans d'expérience, 2005.

C. Taux-de, 136 I.3 Performances mécaniques en traction

P. P. Parlevliet and H. E. Bersee, Residual stresses in thermoplastic composites???A study of the literature???Part I: Formation of residual stresses, Composites Part A: Applied Science and Manufacturing, vol.37, issue.11, pp.1847-1857, 2006.
DOI : 10.1016/j.compositesa.2005.12.025

P. P. Parlevliet and H. E. Bersee, Beukers : Residual stresses in thermoplastic composites-a study of the litterature. part iii : effects of thermal residual stresses, Composites part A : Applied Science and Manufacturing, vol.38, pp.15981-1596, 2007.

C. Thomas, Etude des mécanismes d'endommagement des composites fibres de carbone / matrice polyamide : application à la réalisation de réservoirs de réservoirs de stockage sous haute pression de type IV, Thèse de doctorat, 2011.

N. Feng, X. Wang, and D. Wu, Surface modification of recycled carbon fiber??and its reinforcement effect on nylon 6 composites: Mechanical properties, morphology and??crystallization behaviors, Current Applied Physics, vol.13, issue.9, pp.2038-2050, 2013.
DOI : 10.1016/j.cap.2013.09.009

J. M. Ramirez, Les mécanismes de fatigue dans les fibres thermoplastiques, Thèse de doctorat, 2004.

J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook Fourth Edition, 1999.

A. Hassan, N. A. Rahman, and R. Yahya, Moisture absorption effect on thermal , dynamic mechanical and mechanical properties of injection-molded short glassfiber/polymaide 6,6 composites. Fibers and Polymers, pp.899-906, 2012.

M. F. Arif, F. Meraghni, Y. Chemiskya, N. Despringrea, and G. Robert, In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity, Composites Part B: Engineering, vol.58, pp.487-495, 2014.
DOI : 10.1016/j.compositesb.2013.11.001

URL : https://hal.archives-ouvertes.fr/hal-01513629

A. Ghorbel, N. Saintier, and A. Dhiab, Investigation of damage evolution in short glass fibers reinforced polyamide 6,6 under tensile loading using infrared thermography, Procedia Engineering, vol.10, pp.2123-2128, 2011.
DOI : 10.1016/j.proeng.2011.04.351

N. Sato, T. Kurauchi, S. Sato, and O. Kamigaito, Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation, Journal of Materials Science, vol.22, issue.14, pp.3891-3898, 1991.
DOI : 10.1007/BF01184987

G. Kalaprasad, K. Joseph, S. Thomas, and C. , Pavithran : Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites, Journal of Materials Science, vol.32, issue.16, pp.4261-4257, 1997.
DOI : 10.1023/A:1018651218515

L. E. Nielsen and M. Dekker, Mechanical properties of polymers and composites, Journal of Polymer Science : Polymer Letters Edition, vol.13, pp.120-121, 1974.

M. A. Islam and K. Begum, Prediction models for the elastic modulus fo fiberreinforced polymer composites : An analysis, Journal of Scientific Research, vol.3, pp.225-238, 2011.

P. T. Curtis, M. G. Bader, and J. E. Bailey, The stiffness and strength of a polyamide thermoplastic reinforced with glass and carbon fibres, Journal of Materials Science, vol.5, issue.2, pp.377-390, 1978.
DOI : 10.1007/BF00647783

S. Fu and L. Bernd, Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers, Composites Science and Technology, vol.56, issue.10, pp.1179-1190, 1996.
DOI : 10.1016/S0266-3538(96)00072-3

M. L. Mehan and L. S. Schadle, Micromechanical behavior of short-fiber polymer composites, Composites Science and Technology, vol.60, issue.7, pp.1013-1026, 2000.
DOI : 10.1016/S0266-3538(99)00194-3

P. Ouagne, L. Bizet, C. Baley, and J. Bréard, Analysis of the Film-stacking Processing Parameters for PLLA/Flax Fiber Biocomposites, Journal of Composite Materials, vol.19, issue.2, pp.1201-1215, 2010.
DOI : 10.1016/j.compositesa.2007.03.002

A. Megally, Etude et modélisation de l'orientation de fibres dans des thermoplastiques renforcés, Thèse de doctorat, 2005.

A. R. Sanadi and M. R. Piggott, Interfacial effects in carbon-epoxies, Journal of Materials Science, vol.20, issue.2, pp.431-437, 1985.
DOI : 10.1007/BF01026511

N. Jiang, Fabrication and evaluation of specialty nonwoven materials, Thèse de doctorat, 2008.

K. Giannadakis, M. Szpieg, and J. Varna, Mechanical Performance of a Recycled Carbon Fibre/PP Composite, Experimental Mechanics, vol.30, issue.1, pp.767-777, 2011.
DOI : 10.1016/S1359-835X(98)00185-7

G. Jiang and S. J. Pickering, Measurement of surface energy of recycled carbon fibres using a capillary intrusion method, 18th International Conferences on Composite Materials, 2011.

C. Ibanes, Relations structure-propriétés mécaniques de fibres de polyamide 6 renforcées de nanoparticules organiques ou minérales, Thèse de doctorat, Institut National des Sciences Appliquées de Lyon, 2003.

S. Pimenta and S. T. Pinho, The influence of micromechanical properties and reinforcement architecture on the mechanical response of recycled composites, Composites Part A: Applied Science and Manufacturing, vol.56, pp.213-225, 2014.
DOI : 10.1016/j.compositesa.2013.10.013

J. C. Halpin, K. Jerina, and J. M. Whitney, The Laminate Analogy for 2 and 3 Dimensional Composite Materials, Journal of Composite Materials, vol.28, issue.1, pp.36-49, 1971.
DOI : 10.1177/002199836800200308

N. Pan, The Elastic Constants of Randomly Oriented Fiber Composites: A New Approach to Prediction, Science and Engineering of Composite Materials, vol.16, issue.2, pp.63-72, 1996.
DOI : 10.1515/SECM.1996.5.2.63

E. S. Greenhalgh, Failure analysis and fractography of polymer composites, 2009.

C. Ozkana, N. G. Karslib, A. Aytaca, and V. Deniza, Short carbon fiber reinforced polycarbonate composites: Effects of different sizing materials, Composites Part B: Engineering, vol.62, pp.230-235, 2014.
DOI : 10.1016/j.compositesb.2014.03.002

D. Y. Kwok and A. W. Neumann, Contact angle measurement and contact angle interpretation, Advances in Colloids and Interface Science, pp.167-249, 1999.
DOI : 10.1016/S0001-8686(98)00087-6

J. Sénécot, Etude de l'imprégnation capillaire de tissus de verre, Thèse de doctorat, 2002.

O. and B. Aicha, Modification de surface des fibres de PA6-6 par greffage chimique, Thèse de doctorat, 2004.

K. K. Ho, A. F. Lee, S. Lamoriniere, and A. Bismarck, Continuous atmospheric plasma fluorination of carbon fibres, Composites Part A: Applied Science and Manufacturing, vol.39, issue.2, pp.364-373, 2008.
DOI : 10.1016/j.compositesa.2007.10.008

B. Song, A. Bismarck, R. Tahhan, and J. Springer, A Generalized Drop Length???Height Method for Determination of Contact Angle in Drop-on-Fiber Systems, Journal of Colloid and Interface Science, vol.197, issue.1, pp.68-77, 1998.
DOI : 10.1006/jcis.1997.5218

T. M. Duc, Analyse de surface par esca -principe et instrumentation, 1998.

G. Amand and J. Martin, Traité des matériaux -Tome 3, Caractérisation expérimentale des matériaux : analyse par rayons X, électrons et neutrons, 1998.

N. Hellala, Synthèse et Caractérisation chimique de cristaux et films de diamant par dépôt chimique en phase vapeur assisté par plasma micro-ondes, Thèse de doctorat, 2006.

L. Sun and F. Meunier, Adsorption -aspects théoriques, 2003.

B. D. Coleman, On the strength of classical fibres and fibre bundles, Journal of the Mechanics and Physics of Solids, vol.7, issue.1, pp.60-70, 1958.
DOI : 10.1016/0022-5096(58)90039-5

M. Fazzini, Stéréo-corrélation d'image : Application aux vibrations d'une paroi mince en usinage, 2009.

P. Clerc, Mesure de champs de déplacements et de déformations par stéréovision et corrélation d'images numériques, Thèse de doctorat, Institut national des sciences appliquées de Lyon, 2001.

J. Orteu, Mesure 3d de formes et de déformations par stéréovision, 2002.

P. T. Curtis, M. G. Bader, and J. E. Bailey, The stiffness and strength of a polyamide thermoplastic reinforced with glass and carbon fibres, Journal of Materials Science, vol.5, issue.2, pp.377-390, 1978.
DOI : 10.1007/BF00647783

M. Manera, Elastic Properties of Randomly Oriented Short Fiber-Glass Composites, Journal of Composite Materials, vol.1, issue.2, pp.235-247, 1977.
DOI : 10.1177/002199837100500104

S. W. Tsaï and N. J. Pagano, Invariant properties of composite materials, 1968.

R. M. Christensen and F. M. , Effective Stiffness of Randomly Oriented Fibre Composites, Journal of Composite Materials, vol.13, issue.4, pp.518-532, 1972.
DOI : 10.1002/pen.760090310

N. Pan, The Elastic Constants of Randomly Oriented Fiber Composites: A New Approach to Prediction, Science and Engineering of Composite Materials, vol.16, issue.2, pp.63-72, 1996.
DOI : 10.1515/SECM.1996.5.2.63

H. L. Cox, The elasticity and strength of paper and other fibrous materials, British Journal of Applied Physics, vol.3, issue.3, pp.72-79, 1952.
DOI : 10.1088/0508-3443/3/3/302

B. F. Blumentritt, B. T. Vu, and S. L. Cooper, Mechanical properties of discontinuous fiber reinforced thermoplastics. II. Random-in-plane fiber orientation, Polymer Engineering and Science, vol.12, issue.6, pp.428-436, 1975.
DOI : 10.1002/pen.760150606