Déformations introduites lors de la fabrication de transistors FDSOI : une contribution de l'holographie électronique en champ sombre - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Thèse Année : 2016

Strains induced during FDSOI transistors manufacturing : a study by dark-field electron holography

Déformations introduites lors de la fabrication de transistors FDSOI : une contribution de l'holographie électronique en champ sombre

Résumé

After being considered harmful for a long time, stress became one of the principal means to improve metal-oxide-semiconductor (MOS) device performance. Indeed, the generated strains significantly increase carrier mobility in silicon. Within this context, I used dark-field electron holography (DFEH) to study the crystalline strains generated by some key steps of the manufacturing process of latest generation of planar transistors, fully depleted as produced on silicon on insulator substrates (FD-SOI). DFEH is a transmission electron microscopy (TEM) technique, recently invented at CEMES, which allows crystalline strain to be mapped with nanometric resolution and an accuracy of 10-4 over micrometric fields of view. I developed and used finite element models in order to understand, then reproduce, my experimental results and thus identify the mechanical phenomena involved during different processing steps. After proving that DFEH is suitable for strain fields mapping in FDSOI MOS structures (Si surface layer disorientated in respect of the reference substrate), I have been interested in the conversion process of thin Si films into SiGe, by a method known as "germanium condensation". I showed that this technique enables pseudomorphous thin SiGe films (SGOI) of variable composition to be obtained. The out-of-plane strain measured by DFEH emphasises the two mechanisms affecting the Ge redistribution (diffusion and injection), whose relative importance depends on the temperature of the process. Moreover, I showed that these thin SGOI films, initially stressed, relax strongly during the etching carried out to manufacture co-integrated SOI/SGOI substrates. I could identify that this effect, initially observed by electrical measurements and known as "SA/SB" effect, can only be explained by a degradation of the mechanical characteristics of the SiGe/SiO2 interface. I have also been interested in some of the key steps of the transistor manufacturing suspected to modify the structural strain state, such as the grid stack and sources/drains processes, as well as salicidation necessary to form the contacts. I was able to explain how and why these steps impact the final strain state of the transistor channel and thus its performance. In a separate development, I have shown how DFEH can be used to measure doping concentrations while preserving a nanometric resolution, and discuss its limits. I studied in particular the (favourable) case of boron doping in silicon and, after electrical measurements coupling, I calculated the coefficient connecting the measured strains to the boron substitution concentrations. Finally, I compared and discussed the differences between information obtained by DFEH and high resolution X-ray diffraction. An appendix completes this work and discusses the optical and optimal use conditions of Schottky field emission sources equipping a TEM, in particular the contribution of side-emission lobes on the degree of coherence of the probe.
Longtemps considérées comme néfastes, les contraintes sont devenues un des moyens principaux pour améliorer les performances des dispositifs métal-oxyde-semiconducteur (MOS). En effet, les déformations générées augmentent sensiblement la mobilité des porteurs dans le silicium. C'est dans ce cadre que j'ai étudié, par holographie électronique en champ sombre (DFEH), les déformations cristallines engendrées par certaines étapes clés du procédé de fabrication de transistors planaires de dernière génération, totalement déplétés car réalisés sur des substrats silicium sur isolant (FD-SOI). La DFEH est une technique de microscopie électronique en transmission (TEM), récemment inventée au CEMES, qui permet de cartographier les déformations cristallines avec une résolution spatiale nanométrique et une précision de 10-4 sur des champs de vue micrométriques. J'ai mis au point et utilisé des modélisations par éléments finis afin de comprendre puis reproduire mes résultats expérimentaux et ainsi identifier les phénomènes mécaniques mis en jeu au cours de différentes étapes. Après avoir prouvé que la DFEH est adaptée à la mesure des champs de déformation dans les structures MOS FDSOI (couche superficielle de Si désorientée vis-à-vis du substrat de référence), je me suis intéressé au procédé de conversion de films minces de Si en SiGe, par la méthode dite de "condensation de germanium". J'ai montré que cette technique permet d'obtenir des films minces de type SiGe (SGOI) pseudomorphes, de composition variable. Les déformations hors plan mesurées par DFEH mettent en évidence les deux mécanismes affectant la redistribution du Ge (diffusion et injection), dont l'importance relative dépend de la température à laquelle s'effectue le procédé. De plus, j'ai montré que ces films minces SGOI, initialement contraints, se relaxaient très fortement lors de leur gravure en vue de la fabrication de substrats co-intégrés SOI/SGOI. J'ai pu identifier que cet effet, initialement observé à partir de mesures électriques et connu sous le nom d'effet "SA/SB", ne pouvait être dû qu'à des caractéristiques mécaniques dégradées de l'interface SiGe/SiO2. Je me suis ensuite intéressé à certaines des étapes clés de la fabrication du transistor suspectées de modifier l'état de déformation de la structure, telles que la fabrication de l'empilement de grille et des sources/drains ainsi que de la siliciuration nécessaire à la prise des contacts. J'ai pu expliquer en quoi et pourquoi ces étapes impactaient l'état final de déformation du canal du transistor et donc ses performances. Par ailleurs, je montre comment et dans quelles limites la DFEH peut être utilisée pour mesurer des concentrations de dopants, en conservant une résolution nanométrique. J'ai particulièrement étudié le cas (favorable) du bore dans le silicium et, après couplage à des mesures électriques, j'ai ainsi pu calculer le coefficient reliant les déformations mesurées aux concentrations de bore en substitution. Finalement, j'ai comparé et discuté des différences entre informations fournies par DFEH et par diffraction de rayons X haute résolution. Une annexe complète ce travail et discute des conditions optiques et d'utilisation optimales des sources à émission de champ Schottky équipant un TEM, notamment de la contribution des lobes d'émission latérale sur le degré de cohérence de la sonde.
Fichier principal
Vignette du fichier
Déformations introduites lors de la fabrication de transistors FDSOI - une contribution de la DFEH_Boureau (light).pdf (17.08 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-01786799 , version 1 (06-05-2018)

Identifiants

  • HAL Id : tel-01786799 , version 1

Citer

Victor Boureau. Déformations introduites lors de la fabrication de transistors FDSOI : une contribution de l'holographie électronique en champ sombre. Physique [physics]. Université de Toulouse III - Paul Sabatier, 2016. Français. ⟨NNT : ⟩. ⟨tel-01786799⟩
167 Consultations
162 Téléchargements

Partager

Gmail Facebook X LinkedIn More