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Abstract 

Today’s ever-growing data is becoming increasingly complex due to its large volume 

and high dimensionality: it thus becomes crucial to explore interactive visualization 

environments that go beyond the traditional desktop in order to provide a larger display 

area and offer more efficient interaction techniques to manipulate the data. The main 

environments fitting the aforementioned description are: large displays, i.e. an assembly 

of displays amounting to a single space; Multi-display Environments (MDEs), i.e. a 

combination of heterogeneous displays (monitors, smartphones/tablets/wearables, 

interactive tabletops…) spatially distributed in the environment; and immersive 

environments, i.e. systems where everything can be used as a display surface, without 

imposing any bound between displays and immersing the user within the environment. 

The objective of our work is to design and experiment original and efficient interaction 

techniques well suited for each of the previously described environments.   

First, we focused on the interaction with large datasets on large displays. We 

specifically studied simultaneous interaction with multiple regions of interest of the 

displayed visualization. We implemented and evaluated an extension of the traditional 

overview+detail interface to tackle this problem: it consists of an overview+detail 

interface where the overview is displayed on a large screen and multiple detailed views 

are displayed on a tactile tablet. The interface allows the user to have up to four detailed 

views of the visualization at the same time. We studied its usefulness as well as the 

optimal number of detailed views that can be used efficiently.  

Second, we designed a novel touch-enabled device, TDome, to facilitate interactions 

in Multi-display environments. The device is composed of a dome-like base and provides 

up to 6 degrees of freedom, a touchscreen and a camera that can sense the environment. 

Having a unique device for interaction in these environments limits the homing effect 

when switching from one device to another and leads to a coherent set of interactions 

with the MDE, contributing to a more fluid task flow, a key element in such 

environments.   

Finally, we introduced a new approach to interact in immersive environments with 

complex data. It is based on the use of the forearm as a physical support to assist tangible 

interactions with a multi-degrees of freedom device. We proposed a design space for this 



 

 

approach and we validated its feasibility through an experiment aimed at establishing 

the range, stability and comfort of gestures performed in this new paradigm.  

All along this research work, resulting interaction techniques and environments have 

been concretely illustrated for exploring energy consumption data in the context of 

neOCampus, a project of the University of Toulouse 3 that aims at exploring the Campus 

of the Future, i.e. a smart, innovative and sustainable campus.
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1 Introduction 

1.1 Context 

Our ever-growing computing capabilities have led to a dramatic increase in data 

collection in the last twenty years. In 1992, Huber [88] defined a taxonomy of large data 

sets and used the term “huge” to describe a 1010  Bytes volume of data. At that time, 

multiple hard disks were necessary to hold that amount of data. Today, 26 years later, 

we have memory cards1 that can hold 50 times the data sets described as “huge” in Huber’s 

terms.  

However, exploring this large collection of data, which is particularly important in 

scientific fields, is by no means an easy task, not only due to their volume but also to 

their heterogeneity. As early as 1988, Wegman [192] argued that computing resources 

were altering the character of some classes of data sets, making them not only much 

larger, but also high dimensional and less homogeneous. Today, Wegman’s assumption 

still holds true. Making sense of such complex data, its high dimensions and large volumes, 

becomes even more difficult. 

This thesis is part of the neOCampus operation, a project that relies heavily on 

collecting and exploiting data. This multidisciplinary project, launched in June 2013 at 

the University of Toulouse, involves 11 research laboratories from different fields. The 

goal of the project is to improve the confort of everyday life for the university users 

(students, professors and staff), while decreasing its ecological footprint by reducing the 

functioning ressources (water, electricity and so on). The project promotes research work, 

offering in the campus of the university, a platform for innovative experiments, done at 

a large scale and in vivo, with real users and real situations. The project aims to achieve 

its goals by taking advantage of the proliferation of inexpensive connected devices. The 

approach consists in creating a “smart campus” that would connect not only sensors and 

smart devices at fixed positions in the university, but also the personal mobile devices of 

                                         

1 512 Go Memory cards 
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their users (smartphones, tablets, wearables…). The data produced by such an approach 

is complex and time-dependent, and its exploration requires adequate analysis tools. The 

broad objective of the work presented in this manuscript is to design and evaluate 

interaction solutions to facilitate exploration of such data sets.Today, there is no settled 

interface or interaction solution to visualize and manipulate such complex data (volume, 

dimensionality, heterogeneity). However, a first general solution to improve visualization 

and manipulation of data consists in augmenting the display and visualization surface. 

Several environments have been explored for this specific purpose. Some of the early ones 

involved the use of large displays, usually video projectors, with very low resolutions. 

While their size allows them to easily scale up the data displayed, their resolutions limited 

the volume of data that can be displayed [4]. Eventually, large displays comprised of 

multiple tiled screens emerged, their combination offered high resolutions and large 

congruous display areas [4]. Their high resolutions allow them to display large volumes 

of data, which in turn, facilitate data visualization by allowing the user to have an 

overview of data when visualizing it from afar, and a more detailed view when getting 

closer to it.  

A second approach consists in distributing the displays in space, to compose what we 

will refer to in this manuscript as multi-display environments. Such environments are 

efficient for visualizing multidimensional data: distributing the data among displays helps 

organizing it and facilitates interaction with the assortment of dimensions composing it. 

The rapid evolution of mobile technology (smartphones, tablets and wearables in general) 

widened the definition of multi-display environments (MDE). They introduced the notion 

of personal displays in addition to new input possibilities (small touchscreens and sensors).  

A third way of augmenting display surfaces involves the use of immersive technologies. 

The last decade saw the democratization of immersive systems, their rapid development 

contributes to their affordability which has a direct effect on the extent of research 

exploring their capabilities. Like multi-display environments, they allow the user to 

distribute data among the display area. However, the notion of display in immersive 

environment is broader, it refers to an area where data can be attached, rather than the 

digital technology showing the data. Immersive systems’ stereoscopic and tracking 

capabilities allow the use of the natural spatial perception of the user in understanding 

the different dimensions as well as the spatial relationships in data. 
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1.2 Interaction challenges 

While there is no debate over the benefits of each environment for data exploration, 

it comes at the cost of several interaction challenges tightly related to their inherent 

characteristics. In the following, we provide a broad overview of those challenges for each 

one of the environments described above: 

1.2.1 Large displays 

The considerable display area of large screens introduce scalability issues in that, data 

visualizations previously designed for traditional monitors need to be redesigned when 

transitioning to large high resolution displays. To fully capitalize on the high count of 

pixels they afford and have a full view of the displayed data sets, interaction in those 

environments must be performed from a distance allowing the user to have the full 

visualization in his field of view. It becomes then important to be able to access and 

interact with unreachable content.  

1.2.2 Multi-display environments 

While the heterogeneity of displays composing an MDEs makes them a compelling 

solution for data visualization, they introduce their fair share of challenges in terms of 

interaction. The different sizes, resolutions of displays and the distributed aspect of the 

visualized data require a suitable interaction technique for content transfer between 

displays. The different input modalities of each display require a unified input technique 

that can be redirected from one display to the other. The large displays and tabletops in 

MDEs introduce a privacy problem in that users should be able to see private information 

if needed. 

In addition to their physical characteristics, the displays composing MDEs have 

different input capabilities. The touch input offered by smartphones or tablets is not 

suitable for large displays; pointing interaction techniques used to reach distant objects 

in large displays are not suitable for the accessible display of an interactive tabletop; the 

traditional mouse and keyboard used for desktop monitors are not suitable for 

smartphones, tablets or large displays. 
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1.2.3 Immersive environments 

A large interaction vocabulary is required to tackle the diverse tasks involved in data 

exploration. In immersive environments, these tasks are not entirely covered by the 

existing solutions. Approaches based on mouse, touch and mid-air interaction fail to offer 

enough degrees of freedom (DoF); other solutions are often ambiguous and tiring 

(especially mid-air gestures); and many restrict the user's interaction to a defined place, 

usually a desktop, to use the input device. The challenge then is to provide interactive 

solutions for immersive visualizations that preserves the freedom of movement of mid-air 

interaction and the DoFs of tangible interactions. 

1.3 Contributions 

The objective of our work is to improve interaction in each one of the previously 

described environments. Our thesis was driven by the following research questions: 

- How to explore and manipulate physically unreachable content in multiple zone 

of interest on a large display? 

- How to cope with heterogeneous input and display surfaces in MDEs ? 

- How on-body interaction (i.e. gestures performed with the user’s body as support) 

can reduce fatigue while preserving the degrees of freedom required for interacting 

in an immersive environment ? 

We address these questions through the following contributions: 

- Designing and evaluating a multi-view overview + detail interface to interact with 

large data sets in large displays [157]. 

- Exploring the use of everyday objects for interaction in public multi-display 

environments [159]. 

- Designing and evaluating a touch enabled 6DOF interactive device for multi-

display environments [158]. 

- Using the body as a support for tangible interactions to explore data in immersive 

environments [160]. 

Contribution 1: Interaction with large datasets in large displays 

We took interest in interaction with large datasets on large displays. We specifically 

focused on simultaneous interaction with multiple regions of interest of the displayed 
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visualization. We implemented and evaluated an extension of the traditional 

overview+detail interface to tackle this problem: an overview + detail interface where 

the overview is displayed on a large screen and multiple detailed views are displayed on 

a tactile tablet. The interface allows the user to have up to four detailed views of the 

visualization at the same time. While the multi-view approach in itself is not new, the 

optimal number of detailed views has not been investigated. Using a single detailed view 

offers a larger display size but only allows a sequential exploration of the overview; using 

several detailed views reduces the size of each view but allows a parallel exploration of 

the overview. We experimentally evaluated the effect of the number of detailed views in 

a task related to interaction with large data sets.  

Contribution 2 & 3: Interaction with multi-display environments 

Our second contribution attempts to improve interaction with multi-display 

environments in two different contexts: a public context and a more usual office/work 

context. 

A) The first contribution is based on the observation that public multi-display 

environments are as yet mainly used to display information due to the limited interaction 

possibilities they offer. Using this as our departure point, we identified the unique 

requirements of such environments: their public aspect limits the use of expensive devices 

as the risk of it being stolen or damaged is significant; the casual and quick nature of 

interactions performed in a public context requires easy to discover, easy to perform and 

opportunistic interactions; the interaction proposed must respect the personal space of its 

users. We proposed to explore the use of everyday objects as tools to perform tangible 

interactions to interact with these environments. They are always available, they offer 

easy to perform interactions and their shapes may help suggest their potential use.  

B) The second contribution is TDome, a novel touch-enabled 6DOF input and output 

device to facilitate interactions in MDEs. TDome offers a private display as output, and 

multiple degrees of freedom as input by combining touch gestures on the display with 

physical rotation, roll and translation manipulations of the device. TDome allows versatile 

interactions that address major MDE tasks, which we illustrate through various proof-of-

concept implementations: detect surrounding displays, select one display, transfer data 

across displays, reach distant displays and perform private interactions. Having a unique 

device for interaction in these environments limits the homing effect when switching from 

one device to another and leads to a coherent set of interactions with the MDE, 
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contributing to a more fluid task flow, a key element in such environments. We explore 

TDome’s usability and suitability for MDEs through three user studies.   

Contribution 4: Interaction with immersive environments 

We introduced a new paradigm to interact in immersive environments with complex 

data requiring multiple degrees of freedom. It is based on the use of the forearm as a 

physical support to assist tangible interactions with a multi-degrees of freedom device. 

The use of the body as a support for the interaction allows the user to move in his 

environment and avoids the inherent fatigue of this mid-air interactions—popular in 

immersive environments—. We proposed a design space for this approach describing the 

main characteristics on the interaction support as well as the interaction performed with 

the tangible device. We validated the adequacy of such an approach for immersive 

environments through an experiment aimed at establishing the range, stability and 

comfort of gestures performed in this new paradigm. 

1.4 Outline of the dissertation 

This manuscript is composed of seven chapters (including the present one). Each major 

contribution is described in a separate chapter. The manuscript begins by an introduction, 

followed by a review of the existing work for each one of the three environments 

introduced beforehand. It ends up with perspectives for the future and a conclusion. 

Chapter 2 - Related work 

Chapter 2 details the existing work in each of the previously described environments. 

It is composed of three main sections: Large display, Multi-display environments and 

immersive environments. Each section introduces the environments by defining them and 

describing their major characteristics. The core of each section describes their interaction 

challenges and the main solutions proposed for to address them. Finally, a summary of 

the main solutions proposed for each environment is provided at the end of each section. 

Chapter 3 - Investigating the effect of splitting the detailed view in an Overview + 

detail multi-display interface 

In chapter 3, we present split-focus, the multi-display overview + detail visualization 

interface we designed and developed to improve work on multiple regions of the data 
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space simultaneously. First, we lay down the benefits of using multiple-views to tackle 

the aforementioned problem. Then, we review Baldonado’s [10] eight rules to design and 

use multiple views in information visualizations. Next, we state the rationale behind the 

design of the visualization interface and describe each view composing it. Finally, we 

report on the results of the study conducted to evaluate the visualization interface as well 

as the optimal number of views to use in such a system. 

Chapter 4 - Interacting with multi-display environments (MDE) 

In the first part of this chapter, we focus on interaction with multi-display 

environments in a public context. We introduce the proposed approach: using everyday 

objects for interaction with these environments. Next, we describe a creativity session, 

conducted to study the use of predefined everyday objects to perform specific tasks related 

to MDEs in a public context. We detail the taxonomy we used to classify the proposed 

interaction techniques and recap the lessons learned from the results.  

In the second part of the chapter, we investigate the use of a multi-degrees of freedom 

mouse (TDome) to interact with multi-display environments in a work context. In a first 

step, we identify the requirements of interaction in such environments. Next, an overview 

of the device is provided, it details the degrees of freedom allowed by TDome, it describes 

a scenario illustrating the potential use of such a device in an MDE. Then, we detail the 

core elements used in its implementation and follow up by discussing its suitability for 

interaction with MDEs. In a first study, we explore the usability and confort of performing 

physical and touch gestures with the device. We experimentally validate their feasibility 

and identify a set of gestures that can be easily performed and efficiently detected. Finally, 

we collect user feedback to identify natural mappings between gestures and MDE 

interactions. 

Chapter 5 - Interaction in immersive environments 

Chapter 5 introduces a new paradigm for interaction with immersive environments: 

the use of the forearm as a support for tangible interactions to explore complex data. 

After introducing the concept, we identify the main interaction requirement for immersive 

visualizations. We then proceed by describing the multi-dof device used for interaction as 

well as the forearm as a support. We conclude the first part of this work by providing a 

design space for tangible interactions supported by the forearm. Next, we report on the 

results of an experiment aimed at establishing the range, stability and comfort of gestures 
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performed with a multiple degrees of freedom mouse on the forearm. We conclude the 

chapter by discussing the stability of the device as well as possible mappings between 

gestures and the most common tasks performed in data visualizations. 

Chapter 6 - The neoCampus project 

Chapter 6 presents the neOCampus project in more details. First, we highlight the 

objectives of this thesis in relation to the project. Next, we introduce a description space 

built to identify and organize the relevant characteristics to consider when designing 

interactive solutions to fulfill those objectives. Finally, we discuss our contributions in 

relation to the description space and give a concrete example of how each solution can be 

applied to the neOCampus project. 

Chapter 7- Perspective and conclusion 

This chapter concludes the manuscript. It summarizes the work presented in this 

thesis and presents medium-term and long-term perspectives related to the work 

conducted in this thesis. 
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2 Related Work 

2.1 Introduction 

Over the past decades, HCI researchers have developed a wide range of visualization 

interfaces and interaction techniques to tackle the unceasing challenges posed by the 

complexification of data. The scope of these solutions ranges from interaction techniques 

as simple as using a mouse to filter data on a regular 2D screen [90], to a more advanced 

tangible interaction in an immersive environment to explore large data sets [162].  

This chapter provides an overview of the main approaches designed to support data 

visualization tasks on the following environments: Screens combined to form a large, high-

resolution display (Section 2.2); spatially distributed displays (Section 2.3); immersive 

displays (Section 2.4). As we wanted to focus on interaction techniques that can be used 

with different types of data (text wall for instant data, graphical for historic, 3D for 

building application), we did not focus on specific sets of data and preferred instead to 

focus on interaction techniques that can be used with any set of data. 

2.2 Interaction in large displays 

Before discussing the various solutions proposed for interaction with large displays, it 

is important to define large displays and discuss their characteristics and the opportunities 

they offer (sub-section 2.2.1). Then, we introduce the underlying challenges such an 

environment poses for researchers and the main solutions proposed to address them (sub-

section 2.2.2). A summary of the main interaction techniques as well as the challenges 

they address are given at the end of the section (sub-section 2.2.3). 

2.2.1 Large displays   

As per Andrews’s [4] work on information visualization on large, high-resolution 

displays, the term “display” refers to the combined visual output that serves as a single 

contiguous space, whether it is composed of a single large display unit or multiple tiled 

units. One of the most important aspects of a display for designers is the resolution it 

offers. The resolution of a display (rather than its size) is the criteria that will define the 
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quantity of data it can visually represent. However, acknowledging the importance of the 

resolution of a display without mentioning its size would be misleading and would offer 

an incomplete view of the importance of each attribute. Indeed, it is important to take 

into consideration the size of the display and its resolution as a combination. This is the 

concept behind the “dot per inch” (DPI) metric, which defines the amount of pixels 

available per inch. Andrews et al. [4] argue that a higher DPI means that visualizations 

can be shown with more details, prompting users to get closer to the display to access 

the details, or move away from it for an overview. While this assessment holds true for 

low DPI displays, accessing the overview in those displays require the user to move at a 

greater distance. This greatly influences the approach one would use for interaction: for 

instance a selection technique based on raycasting rather than tactile input would be 

more appropriate in this case.  

Beyond the advantage of displaying more information, large displays also facilitate 

the physical exploration of data [29, 56, 148, 172, 173, 179, 199]. Andrews et al. [3] explain 

how the physical environment created by large displays supports the use of a wide range 

of humans’ physical embodied resources. Ball et al. [11] argue that these human abilities 

(motor memory, peripheral vision, focal attention, spatial memory…), promoted by 

physical navigation (walking, head rotation and every motion that changes how we view 

the information space) enhance the experience of the user, his understanding, as well as 

his performance when interacting with data visualization. 

Large displays change our approach to working with data, since interaction with data 

is more centered around the user than around the display itself. Andrews et al. [3] argue 

that the human-centric perspective on large displays introduces new design guidelines for 

visualizations. In the following, we discuss the main interaction challenges posed by large 

displays and review the existing solutions proposed to address them. 

Several solutions have been designed to support visualization and interaction with 

large datasets on large displays. These solutions can be classified into two categories [4]: 

1) visualization interfaces, which comprise the design of data visualization interfaces to 

answer the scalability issue inherent to the transition to large high dimensional displays; 

and 2) interaction with data visualization, which involves interaction techniques covering 

some of the main tasks in these visualizations (selection, reaching distant objects, 

navigation and alternative input devices) [135]. In the following subsections, we will 

review and discuss some of the more prominent work in each category. 
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2.2.2 Visualization interfaces 

Thanks to their high resolutions, large displays can show a great amount of data, 

while keeping a great depth in scale [65]. This allows the user to have an overview of the 

displayed data by moving away from it, and a more detailed view by getting closer to 

the display. However, the user may need to work on the detailed view of a particular 

region of the visualization while simultaneously having access to the overview. Three 

main visualization paradigms have been proposed to satisfy this requirement: 

Focus+context, Overview + detail and Zooming (Figure 2.1). These paradigms have been 

extensively reviewed and their benefits and drawbacks discussed in several works [50, 66, 

80, 85, 106, 114]. 

 

Figure 2.1: Examples of Overview + Detail (a), Zooming (b) and Focus + context (c) 
interfaces [50] 

An overview + detail interface allows the user to have an overview of the data and a 

detailed view of a region of interest. The two views are spatially separated, thereby 
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prompting the user to interact with the views separately which require him to assimilate 

the relationship between the views [86].  

A focus + context interface does not suffer from this problem as the focused view is 

integrated directly into the context. An example of such interface is the fisheye view [64, 

161] which uses non-linear scaling to allow the user to see a selected region in full details.   

Baudisch et al. [13], argued that fisheye views are a good alternative to 

overview+detail interfaces, as they allow the user to keep adjacent information together, 

thereby avoiding the need for explicit switching between multiple views, as is the case in 

overview + detail interfaces. At the same time, they introduce distortion, which makes 

them unsuitable for tasks where proportions and distances matter. They followed on by 

proposing a focus + context interface that combines the best of both approaches in their 

“focus + context screens” interface. It combines a projected view, serving as a contextual 

view and showing an overview of a scalable area of the visualization, with a high-

resolution display serving as a focus, displaying a more detailed view of a particular region 

from the visualization (Figure 2.2).  

 

Figure 2.2: F+c prototype combining a monitor having a flat surface with a projection 
system. [13] 

Zooming interfaces involve a temporal separation between views [50]: the user can 

view only one of the two views (detailed, overview) at one point in a time. The user has 

to zoom in the visualization to access a detailed view or zoom out if he requires an 

overview of the data. While zooming interfaces allow the user to exploit the entirety of 
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the display for either an overview or a detailed view, Cockburn et al. [49] showed that 

the transitions between the zoomed in view (detail) and the zoomed out view (overview) 

disoriented the users of such systems. 

While they have benefits and drawbacks, these interfaces improve the visual 

exploration of data. When applied to human scale displays where the display’s size and 

resolution are closely matched to the sphere of perception and influence of the human 

body [4], all regions of the visualization are accessible to the user. However, in larger 

displays, when the region of interest is outside of the user’s field of view and reach (the 

top left corner of the display for example), having more details of that region becomes 

difficult.  

Enhanced versions of overview+detail interfaces have been proposed following the 

democratization of mobile devices. Some of these approaches are based on a combination 

of large displays with smartphones or tablets in what we call multi-display systems [1, 

42, 47, 149]. These environments usually combine tablets, large displays and tabletops, 

to extend the overall interaction space. They have been proven to be useful to interact 

with large contexts such as geographical data [1]. Multi-display systems have been used 

in overview+detail configurations [13, 50]. Rashid et al. [149] found that for searching on 

large maps, a multi-device approach was better than a simple mobile one as it allows the 

user to access different regions of the maps relatively easily. Cheng et al. [47] showed 

that, in an overview+detail multi-display technique, moving the position of the detail in 

a miniaturized view was preferred over other techniques. Overview + detail 

configurations, combining a large display for the overview and a tablet for the detailed 

view, allow the user to explore the overview without influencing the detailed view. The 

detailed view does not clutter the large display as opposed to a traditional implementation 

of an O+D interface where the detailed view occupies a part of the large display 

(Figure 2.3).  
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Figure 2.3: Example of a multi-display overview + detail interface [1] 

However, while the interaction solutions described above facilitates access to distant 

regions of the data visualization, they do not allow the user to work on different regions 

of the data visualization simultaneously without having to constantly switch the detailed 

view between the regions of interest. 

The use of multiple focused views has been proposed to allow working simultaneously 

on multiple regions of large contexts [41, 61, 97]. Polyzoom [97] allows multi-scale and 

multi-focus exploration in 2D visual spaces by offering the user the possibility to create 

several hierarchies of zoomed views (Figure 2.4). 

 

Figure 2.4: The polyzoom technique 

Melange [61] uses a distortion-based technique that offers the possibility to bring 

together two regions of a large space by folding them (Figure 2.5). SpaceFold [41], inspired 
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by Melange, introduces a multi-touch interaction technique to improve the manipulation 

of the folds. 

 

Figure 2.5: Folding a 1D video editing timeline using the mélange technique 

2.2.3 Interaction with large displays 

Interaction with visualizations in large displays have been extensively researched. The 

proposed solutions are diverse and cover most of the tasks frequently performed in data 

visualization. In this section we will focus on the main tasks: selection, reach distant 

objects, navigation and interaction with separate control and widgets [135]. 

Pointing and reaching distant objects 

Several approaches have been proposed to reach and interact with distant objects in 

large displays, most notably: Raycasting, mid-air gestures and the use of smartphones 

and wearables.  

Raycasting is a popular approach when it comes to pointing in large displays. 

Raycasting based pointing techniques were proposed as early as the nineties. Kirstein et 

al. [109] proposed a simple interaction technique, using a laser pointer detected by a video 

camera, as a pointing device to move and hide/show the mouse cursor. Chen et al. [45], 

adopting a similar approach, used multiple cameras to detect multiple pointers while Ji-

Yong et al. [136] based their system on the blink patterns of the pointers to distinguish 

them. Bi et al. [28] proposed an approach that supports collaboration.  

More recent approaches [119, 39, 103, 131, 67, 122] exploited the advances technology 

made, to offer more compact and efficient solutions. Nancel et al. [131] investigated 

pointing on large displays from a distance, they explored the limit of existing remote 

pointing techniques, and they investigated dual-precision techniques combining coarse 

and precise pointing. 
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More recently, Matulic et al. [122] proposed a multi-finger raycasting technique where 

each finger projects a ray onto the display. The technique allows its user to perform direct 

input using patterns of ray intersections created by his hand posture. This interaction 

technique can be used for tasks including object selection, object moving and zooming. 

 

Figure 2.6: Multi-finger raycasting for large displays [122] 

Mid-air gestures have been extensively used for interaction with large displays since 

they do not hinder the movement of the user which is critical in physical exploration and 

navigation. Walter et al. [189] used mid-air gestures inspired by commercial solutions and 

enhanced them for better usability to select items on an interactive public display. Bailly 

et al. [7] proposed a mid-air selection technique based on extending a certain number of 

fingers towards the display to activate a menu command. Vogel et al. [182] proposed two 

interaction techniques to perform selection tasks (AirTap, ThumbTrigger) and 

demonstrated that absolute pointing is more efficient when interacting from great 

distances. Cockburn et al. [51], Nancel et al. [134] and Haque et al. [76] proposed mid-air 

pointing techniques where users point at targets using their arms and fingers. 

 

Figure 2.7: The ARC-Pad technique [123] 

Smartphones and tablets based interaction are more and more popular among 

researchers. Mccallum et al. [123] used a handheld device as a remote controller to move 

a distant cursor through its touchscreen (Figure 2.7). Nancel et al. [133] worked on 

improving pointing accuracy in a similar approach. Boring et al. [34] used smartphones 

to control a pointer on a large display by scrolling, tilting or moving the smartphone to 

achieve the task at hand.  
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Raycasting technique and mid-air interactions are two popular approaches for objects 

selection. They offer a quick and easy way to point and select objects. However, their 

accuracy is limited when selecting small or distant objects. They also suffer from occlusion 

as the raycast and the tracking device detecting mid-air interaction should not be 

obstructed. Finally, an inherent problem to physical interaction is fatigue, the physical 

nature of both approaches render them prone to tiredness. While they are not as natural 

as the Raycasting and mid-air techniques, interaction techniques based on smartphones 

and tablets offer better accuracy through the virtual interactions they propose. 

Navigation and interaction with controls 

Over the years, researchers tried to improve navigation either by implementing 

interactions techniques based on the traditional pan and zoom, or by designing new 

approaches [132, 149, 47, 24, 175, 25, 173]. 

Rashid et al. [149] showed that controlling large displays using smartphones is the 

best approach for tasks involving map, text and photo exploration. Many interaction 

techniques for navigation and content exploration use this modality on large displays. 

Cheng et al. [47] proposed four interaction techniques to explore an overview (DualTap, 

DirectTap, TabTilt and TapPoint). Dual tap allowed the user to use multi-touch 

interactions to change the position and size of a rectangle representing the detailed region. 

DirectTap is a version of DualTap offering absolute placement. TabTilt uses the sensors 

of the tablet to detect tilting and position the region of interest in the overview 

accordingly. TabPoint uses a WiiMote2 to point towards the region to select. Cheng 

reported that DualTap is the preferred interaction technique. Nancel et al. [132] used a 

handheld device and free space gestures to perform pan and zoom on wall-sized displays. 

They identified several factors for the design of similar interaction techniques. They 

reported on fatigue and lack of efficiency emanating from gestures performed in free space 

and on the benefits of guidance for input gestures. They also found that linear gestures 

allowing clutching were more efficient than circular, clutch-free gestures. Sollich et al. 

[173] explored the use of spatially aware smartphones to make sense of data changing 

over time with developmental biologists.   

                                         

2 Nintendo’ s Wii controller 
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Bergé et al. [24] proposed a multi-device overview+detail interface facilitating 

personal 3D exploration in public displays. They designed and evaluated three types of 

interaction techniques to translate the detailed view: two of them were based on mid-air 

interactions (with the mobile device, around the mobile device) and the third used the 

device’s touchscreen. They followed this work by evaluating around the smartphones 

techniques with tactile and tangible techniques for 3D manipulation [25]. Their results 

show that around the smartphone interaction techniques are better than tactile and at 

least on par with tangible techniques.  

 

 

Figure 2.8: Top: General setting of smartphone-based Overview+Detail interface on a 3D 
Public Display. Bottom: navigation techniques: a) Mid-Air Hand, b) Mid- Air Phone and c) 

Touchscreen [24] 

Chapuis et al. [44] proposed the customization of mobile interfaces programmatically, 

to support virtual widgets and gestures and to create and interact with content on a large 

display (Figure 2.9). 
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Figure 2.9: Object selection and grouping with three users. The interface running on a 
phone (left, middle user) and on a tablet (right, right user). Six state button widgets have been 

added by the application. The” Cursor Inside” action (device on the right) is attached to the 
active green puck, and acts as a mouse cursor confined inside a window [44]. 

Jansen et al. [94] used tangible widgets attached to a tablet to manipulate remote 

content on a distant display. Their approach support locomotion and allow for rich 

interaction from a distance. They also showed that a tangible approach allows for more 

accurate manipulation (Figure 2.10). 

 

Figure 2.10: Two users performing dynamic queries on a scatter plot using tangible remote 
controllers [94] 
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Sousa’s DETI-Interac [175] is a system that allows interaction with public displays 

using gestures detected by a Microsoft kinect3. They argue that their approach allows for 

more natural interactions than existing approaches. 

Baudisch’s drag-and-pop [14] allows interaction with distant objects using proxy 

objects, a rubber band graphic is kept during the interaction to provide feedback related 

to the connection between the objets. Arguing that the current text entry methods are 

not adapted to large display, where users need to move freely, Markussen et al. (2013) 

explored the use of selection-based text entry methods for text input mid-air. Walter et 

al. [188] proposed a design space for mid-air gestures to interact with large public displays, 

they evaluated them and found that dwell was efficient for items selection, confirming 

Hespanhol et al. [81] findings. In addition to that, they provided recommendations for 

designers of such interaction solutions.  

2.2.4 Summary 

In this section, we highlighted the advantages large displays offer for the exploration 

of large volume of data, namely: their high resolutions, which allow them to display large 

amount of data in greater details; the physical exploration they support, which affords 

the use of a wide range of the users physical embodied resources, enhancing his experience, 

his understanding as well as his performance when interacting with data visualizations.  

We identified the main challenges they generate, specifically: the scalability issue 

related to adapting visualizations previously designed for smaller displays; The 

reachability issue designers need to take into consideration when designing interaction 

technique to select and manipulate distant objects, navigate in the large display and 

interact with multiple regions of interest simultaneously. 

We reviewed the existing solutions proposed to address the challenges described 

above, notably: the three main visualization paradigms proposed to allow the user to 

work on a specific region of the visualization while keeping a contextual view: Overview 

+ Detail, Focus + context and zooming; Raycasting technique, mid-air interactions and 

mobile devices based interaction to perform the most common tasks in large displays; the 

                                         

3 https://developer.microsoft.com/fr-fr/windows/kinect 
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multi-view approach to interact with several regions of interest of large datasets 

simultaneously.  

While several aspects of the solutions proposed above have been researched 

exentensively, we identified a missing piece in interaction with several regions of the same 

dataset simulateously. Although several techniques based their solution on multi-view to 

address this last challenge, the optimal number of detailed views has not been 

investigated. The first work of this thesis, Split-focus, aims to address this point by 

investigating the effects of splitting detailed views in Overview+Detail interfaces. 

2.3 Interaction in multi-display environments 

Multi-display environments (MDEs) combine several displays, usually smartphones, 

tablets, large displays and tabletops, to extend the overall interaction space. MDEs have 

been used extensively in multiple contexts: medical field [12, 71,169]; meeting rooms [147, 

53, 176]; traffic management [144]; home automation [99]; exploration of large datasets 

[18, 120]. 

 

Figure 2.11: An example of a heterogeneous multi-display environment [170] 

The heterogeneity of displays (mobility, orientation, position, resolution, size) 

composing such environments offers new opportunities for data visualization as well as 
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new challenges when designing interaction solutions. Each one of their inherent 

characteristics influences the type of data visualized and changes the way users interact 

with such displays. In the following subsection 2.3.1, we will discuss those characteristics, 

their benefits and the interaction challenges they entail. 

2.3.1 Multi-display environments 

MDEs usually contain at last one large display. They offer many benefits in visualizing 

large quantities of data (as described in the previous section—Large displays). In addition 

to those benefits, their size and high resolutions make them primary candidates to serve 

as an overview in MDEs. Having an overview display in an MDE has been proven to 

improve collaboration. Brudy et al. [38] conducted an empirical study that explores the 

use of an overview device in a collaborative trip-planning task performed in an MDE.  

 

Figure 2.12: Left: P8 (WO2) points toward overview device, other members shifted their 
attention to it. In NO groups pointing rarely led to shared attention (right): P29 (INT1) points 

toward her device; other members’ focus stays on own devices [38]. 

They found that having an overview display in such environments facilitates decision-

making and sense making. Wallace et al. [187] investigated the use of personal and shared 

displays during group work, in an MDE composed of personal workspaces (laptops) and 

a shared virtual work space (wall projection). They found that using a shared display 

appeared to support synchronization of the group activity via body language and gaze. 

MDEs containing large displays have also been proven to be useful to interact with large 

contexts such as large datasets [1].  

Horizontal displays—usually interactive tabletops in MDEs—favour collaboration. 

Rogers et al. [155] compared tabletops to wall displays in collaborative tasks. While they 
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did not find a difference in terms of display orientation, they found that the side-by-side 

arrangement of users allowed by tabletops encourages more discussion.  

Mobile displays—like smartphones and tablets—trade screen real estate for mobility 

and privacy. Their small size allows them to be used as private displays to view personal 

data [60]. In addition to that, they offer a great range of input capabilities which, 

combined to their mobile nature, makes them an interesting controller for fixed displays.  

Another characteristic that can impact interaction in MDEs is the spatial distribution 

of displays. As content is distributed among display in MDEs, a badly positioned display 

might affect the visibility of the content, an unreachable display may require an 

interaction solution for reaching distant objects. Su et al. [178] showed that display 

position impact performance and workload and proposed guidelines on how to position 

displays in an MDE. Fender et al. [63] developed a system that automatically suggests 

positions and sizes for MDEs’ displays, based on user behaviour analysis. 

MDEs where displays are aware of the users’ position and/or other displays’ positions 

are called spatially aware multi-display environments. Spatial awareness impact how an 

interaction technique is designed. As an example, Chuckling [78] is a one-handed 

document sharing technique that lets users physically throw content to displays, in 

different locations, to share information. It uses a combination of touch interaction to 

select the content to share and the accelerometer of the mobile device to detect the 

direction of the toss, and consequently, the display that would receive the shared content. 

In this instance, the mobile device is aware of the position of other displays.  

In addition to their physical characteristics, the displays composing MDEs have 

different input capabilities. The touch input offered by smartphones or tablets is not 

suitable for large displays; pointing interaction techniques used to reach distant objects 

in large displays are not suitable for the accessible display of an interactive tabletop; the 

traditional mouse and keyboard used for desktop monitors are not suitable for 

smartphones, tablets or large displays.  

While the heterogeneity of displays composing an MDEs make them a compelling 

solution for data visualization, they introduce their fair share of challenges in terms of 

interaction. The different sizes, resolutions of displays and the distributed nature of the 

visualized data require a suitable interaction technique for content transfer between 

displays. The different input modalities of each display require a unified input technique 
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that can be redirected from one display to the other. The large displays and tabletops in 

MDEs introduce a privacy problem in that users should be able to see private information 

if needed. Large displays showing distant content require that the input modality used 

allow for interaction with unreachable content. In the following, we present a range of 

techniques designed to support interaction in MDEs.  

2.3.2 Early multi-display interaction techniques 

 While mouse input is suited for interactions with multiple desktop monitors [20], 

such a device does not adapt well to multi-display environments (MDEs) where displays 

may be scattered within the physical space [185].  

The need to design alternatives to the mouse and keyboard for such environments is 

consolidated by the current trend leaning towards the use of portable displays (Laptops, 

smartphones, tablets). One of the earliest solutions, Pick’n Drop [152], uses a stylus to 

transfer information from one device to another (Content redirection). The user touches 

an object with the stylus on a display to pick it up, and perform the same action on 

another display to drop it (Figure 2.13).  

 

Figure 2.13: Rekimoto’s [152] Pick-and-drop technique 

They followed on two years later [153] by proposing an augmented multi-display 

environment (Figure 2.14) where the physical objects and displays are augmented 

digitally to create a spatially continuous shared workspace. This environment allows users 

to easily transfer content between displays (Content rediction). The system is augmented 

by video projectors and uses camera tracking to detect interactions. 
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Figure 2.14: Rekimoto’s [153] augmented surfaces 

PointRight [101] is an interaction solution designed to provide common keyboard and 

mouse control for heterogeneous MDEs (Input redirection). It uses a peer-to-peer4 pointer 

and keyboard redirection system where each display in the MDE participates in the 

interaction either as a source or target of pointers events. Benko et al. [20] proposed a 

more basic approach in using hotkeys to redirect the cursor of a mouse from one display 

to another, they demonstrated that their approach was quicker than a mouse in a regular 

multi-monitor desktop. Nacenta et al. [129] used the stylus for pointing, a particularly 

difficult task when displays are large or far from the user. 

In the early days of multi-display environments, input rediction and content transfer 

have been identified as the main challenges to address when interacting with multi-display 

environments. In the following, we will review and discuss the major solutions proposed 

to address those requirements. 

                                         

4 https://en.wikipedia.org/wiki/Peer-to-peer 
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2.3.3 Adapting mobile and wearable devices for MDEs 

It is not surprising that mobile displays are an integral and almost unavoidable part 

of today’s MDEs. The benefit of mobility has been highlighted in early multi-display 

environments when mobile phones and tablets were not as available as today [79, 117]. 

The democratization of small mobile displays provides not only output capabilities in 

MDEs, but also a large range of input capabilities. Performing physical gestures with 

mobile devices leverages significantly more DOF than those available with existing 

devices, such as mice. The main reason is that such devices combine a number of sensors 

that expand the input/output space (e.g. touch, tilt).  

Content transfer is one of the tasks that benefitted the most from the arrival of mobile 

devices, researchers used them particularly as gesture mechanisms. Döring et al. [60] 

proposed a set of usable motion gestures, suitable for being used in multi-display 

environments with smartphones and interactive tabletops (Figure 2.15), across several 

application domains. Examples of proposed gestures included throwing from a mobile 

device to a digital tabletop to send data, as well as pulling from a digital tabletop to a 

mobile device to collect data.  

 

Figure 2.15: Natural gesture interactions with the mobile phone in a multi-display poker 
game: (a) look into cards,  (b.1) fold with cards open,  (b.2) fold with cards closed, and (c) 

check [60] 

Similarly, Dachselt et al. [57] proposed throwing and tilting to transfer content to 

large displays. Adalberto et al. [2] proposed an interaction techniques based on Rekimoto’s 

drag-and-drop [152] where the user can transfer data between a fixed display and a mobile 

device using a two-handed gesture: one hand is used to suitably align the mobile phone 

with the larger screen; the other hand is used to select and drag an object between the 

two devices and choose which application should receive the data (Figure 2.16).  
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Figure 2.16: Drag-and-Drop concept: (a) a user holds the mobile phone next to the desktop 
screen and selects a data item. (b) The user drags it inside the screen. (c) In the other direction, 

a user selects data on the PC and (d) drops it on the phone [2] 

Jokela et al. [102] designed three interaction techniques using the smartphone’s 

inherent characteristics to move content (visual objects) between smartphones. The first 

interaction technique (Tray) enables the user to move objects through a virtual tray 

shared between devices; the second interaction technique requires the users to perform a 

simple tap to move content between them; the last technique—called Device Touch—is 

based on the devices physically touching (Figure 2.17).  

 

Figure 2.17: Different cross-display object movement methods: a) Tray, b) Transfer Mode, 
and c) Device Touch [102] 

The camera on the mobile device has also been used to transfer data between MDE 

displays: Boring et al. [34] developed Touch Projector, an interaction technique using the 
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smartphone’s camera to manipulate and transfer content from one display to another 

(Figure 2.18). 

 

Figure 2.18: Walkthrough of the original metaphor: The user aims at a display (a) and 
touches the item of interest (b). When moving the device off-screen, a thumbnail of the dragged 

item is showing (c). After reaching the destination display (d), the item can be positioned 
precisely by moving the finger (e). When the finger is released, the item has been transferred 

successfully (f) [34] 

Chang et al. [43] used the smartphone’s camera to identify displays, capture the work 

state on the display, and transfer it to another display. Other approaches for content 

transfer include: using smartphones for copy-and-paste operations [163], using 

smartwatch-centric gestures in cross-device applications [87] and using the 

rotation/tilting of smartphones [27].  

In addition to content transfer, mobile devices have been used to explore large datasets 

on large displays. Bergé et al. [25] used mobile devices for interacting with distant 3D 

content. Nancel et al. [133] used them for pointing on a large display. Other researchers 

used them for continuous map navigation [34, 132]. Another common approach is to use 

mobile devices for multi-display overview+detail tasks [16, 24]. 

Most of the interaction solutions described above require the mobile device to be held 

mid-air, which can be tiring [82]. It can also affect the precision of the interaction. To 

overcome these problems, mobile devices can be actuated. Hover Pad [166] is an MDE 

composed of an interactive tabletop and a self-actuated display that can move 

autonomously in mid-air to navigate through three-dimensional space (Figure 2.19). 

Kim’s [108] G-Raff is an elevating tangible block equipped with a display that supports 

3D interaction on tabletop displays (Figure 2.20).  
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Figure 2.19: Overview and details of the Hover Pad hardware setup (a) with details 
regarding the sliding carriages for x, y-motion (b), the telescope bars for vertical motion (c), 

and the display’s frame for rotation (d), comprising two motors (i, iv), a controller board (iii), a 
battery pack (v), and 16 capacitive buttons (ii) 

 

Figure 2.20: G-raff: A Tangible Block Supporting Spatial Interaction in a Tabletop 
Computing Environment [108] 

Mobile devices have also been used in complete MDE interfaces. Serrano et al. [168] 

developed Gluey: a user interface based on the combination of a head-worn-display with 

a camera, which facilitates seamless input transitions and data movement across displays. 

Rädle et al. [146] designed HuddleLamp: a desk lamp with an integrated camera that can 

track positions of multiple devices and hands on a table to allow around-the-table 

collaboration. The HuddleLamp can support a large set of cross-device interactions: 

peephole navigation, where a smartphone or a tablet is used to physically navigate a large 

overview; synchronous navigation, where a large overview is shared between display; 

spatially-aware menus and modes changing the role of devices based on their orientation 

or distance; cross-device flicking to transfer data between displays (Figure 2.21). 



  Chapter 2 – Related work 

51 

 

 

Figure 2.21: The HuddleLamp detects and tracks mobile devices and users’ hands for ad hoc 
multi-device collaboration on desks [146] 

To enable mobile users to associate personal displays with other displays in an MDE, 

and facilitate selection and discovery of displays, Gostner et al. [69] proposed two spatial 

interfaces: the first one is a list ordered by distance, describing the displays in the MDE; 

the second one is a miniature map of the MDE. They evaluated the two spatial interfaces 

in comparison to a simple alphabetical list of displays (baseline) and their results provided 

clear evidence of users preferring the miniature map of display over the other two options.   

2.3.4 Augmenting regular mice for MDEs and multi-dof 

devices 

In the early days of multi-display environments and upon identifying the inadequacy 

of traditional mice and keyboards for the aforementioned environments, researchers 

proposed several solutions based on augmenting regular mice. Booth et al. [30] proposed 

the Mighty Mouse, a remote control technique that allows the user to choose the display 

he wants to control from a list of all available displays in the MDE. The system then uses 

the VNC5 protocol to redirect mouse input to the chosen display. Baudisch et al. [15] 

developed the mouse ether, an interaction technique that facilitates the movements of 

the cursor from one display to another in a multi-display environment where the displays 

have different resolutions and/or orientation. Benko et al. [20] augmented the mouse with 

hotkeys, allowing the user to redirect it between displays. The Perspective Cursor 

technique [130] exploit the user’s perspective of the room, to map the cursor to the display 

space that appears the more natural and logical from the user’s position. Nacenta et al. 

[130] evaluated their interaction technique and found that it performs significantly faster 

                                         

5 Virtual Network Computing (VNC) is a graphical desktop sharing system that remotely controls 
another computer (https://en.wikipedia.org/wiki/Virtual_Network_Computing). 
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for targeting tasks compared to the traditional techniques. They also showed that 

Perspective Cursor is effective for systems that require time-efficient interactions, and 

that it was strongly preferred by users. Kobayashi et al. [111] proposed the ’ninja cursors’ 

technique that replicates the mouse cursor as much as necessary, to improve pointing 

performance. Other multi-DOF input devices have been proposed in the literature, 

although they were not specifically designed nor tested in the context of MDEs. Their 

capabilities and the degrees of freedom they offer make them interesting candidates to 

fulfill MDEs’ requirements. The Rockin’ Mouse [8] and the VideoMouse [84] have rounded 

shapes that allow tilting the device and thus, offer additional DOF in comparison to a 

regular mouse that can be used to perform multi-display tasks (Figure 2.22).  

 

Figure 2.22: The Rockin’Mouse [8] (left) and the VideoMouse [84] (right) 

The Roly-Poly Mouse (RPM) [140] uses a completely rounded bottom to augment 

the mouse’s DOFs (Figure 2.23). It has been shown to provide larger amplitude of 

movement than previous tilting devices, and it also enables compound gestures (see 

Table 1 in 140) for a summary on the differences between RPM and previous tilting and 

multi-DOF mice).  

 

Figure 2.23: The Roly-Poly mouse [140] 

While the rounded dome-like shape of RPM offers multiple degrees of freedom, it 

hinders the device’s stability. Unintended physical manipulations (e.g. Roll during 

Translation) are common on devices with such a form factor (cf. study 1 in [140]). The 
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LensMouse [197] uses a touchscreen coupled with an input device. Other mice have also 

proposed the use of multi-touch [22].  

2.3.5 Summary 

In this section, we introduced multi-display environments: a combination of several 

displays, usually mobile devices, large displays and tabletops, to extend the overall 

interaction space. 

We described the inherent characteristics related to the heterogeneity of the displays 

composing them: mobility, orientation, position, resolution, size. 

We discussed the advantages resulting from those characteristics as well as the 

interaction requirements that stem from them: input redirection (i.e. redirect input 

channels to different displays), output redirection (i.e. move content between displays), 

physical relationship (i.e. possess high-level information on the spatial layout of the 

displays), reachability (i.e. interact with a distant display) and personal data management 

(i.e. personal input and output interaction).  

We reviewed a range of techniques proposed to fulfill the requirements described 

above, notably: using tracking solutions to detect the displays of the environments and 

create a continuous relation between them; adapting the mouse to a multi-display setup 

to redirect input from display to another; using pen based interaction and adapting mobile 

devices to facilitate content transfer between displays or reach distant objects. 

However, while several interaction techniques have been proposed to improve 

interaction in MDEs, they usually address one requirement at a time. To our knowledge 

no device has been specifically implemented to address this full set of requirements. The 

second contribution of this thesis lies on the design and evaluation of a novel touch-

enabled device, TDome, designed to facilitate interactions and address a range of tasks 

in MDEs through its multiple degrees of freedom. 
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2.4 Interaction in immersive environments 

Immersive technologies went from expensive, heavy VR headsets a few years ago to 

lightweight and as affordable as sub-50$ VR headsets that can be used with most 

smartphones today. Extremely performant headsets like the Hololens6, the Oculus rift7, 

MetaVision8 or Moverio9 can be bought commercially for a few thousands of dollars. This 

opened the door to new research fields like immersive analytics, reflecting the potential 

of such environments.   

One of the main advantages of immersive environments is their spatial capacities that 

support human cognitive abilities and allow for a spatial comprehension of data [6,124]. 

In immersive environments, the information is spatially displayed around the user 

supporting physical exploration of data. Their performant tracking systems allow them 

to offer a natural way of interaction.  

Beyond the challenges of interaction in direct relation to the characteristics of 

immersive systems, challenges of interaction with complex data in immersive 

environments can be task-dependent. We will focus on the challenges related to the most 

common data visualization tasks, which include: selection, navigation, filtering and 

manipulation of objects in 3D environments. 

As we will see in the following section, most of the early interaction techniques 

proposed for these environments were inspired from desktop interfaces. The advent of 

affordable immersive headset combined to that of smartphones, tablets and wearables in 

general changed the direction of research to more creative solutions. 

The rest of this section will review the interaction solutions proposed for immersive 

environments according to the modality of interaction involved. 

2.4.1 Tactile interactions 

In today’s world, tactile is the preferred interaction technique for a myriad of tasks 

and environments. Immersive environments are no exception. Whether the interaction is 

                                         

6 https://www.microsoft.com/en-us/hololens 

7 https://www.oculus.com/rift/ 

8 http://www.metavision.com/ 

9 https://epson.com/moverio-augmented-reality 
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integrated directly in the immersive device (HWD10, Smart glasses) [156], or deported to 

an external supporting device (Smartphones, Tablets, Wearables, interactive tabletops) 

[116, 58], several research focused on the use of tactile interactions for immersive 

visualizations. Rudi et al. [156], explored the design space for map interaction techniques 

on HMDs: they proposed tactile interactions to navigate a large map (Figure 2.24). 

However the tasks/actions covered were limited and involved only panning and zooming.   

 

Figure 2.24: A depiction of how control inputs (e.g., moving the mouse along the x-axis to 
the left or right) correspond to map interactions (i.e., moving the map along the same axis/in 
the same direction) for: (a) mouse controls, (b) touch controls, (c) haptic controls on OHMD, 

(d) head controls on OHMD [156] 

Giannopoulos et al. [115] went further, they mapped the input function of a Samsung 

VR headset 11 (Touchpad and a programmable back button) to the core functions offered 

by digital maps to design interaction technique to perform pan gesture, zoom gesture and 

selection of a point of interest in a map. Dane et al. [58] approach was based on the use 

of a tabletop for interaction with a large stereoscopic display. They proposed a widget 

based interface controlled by a set of interaction techniques to navigate 3D visualizations. 

The tasks covered include: data selection, controlling slicing planes and writing 

annotations. In a similar fashion, Claes et al. [118] use a multi-touch interactive tabletop 

to explore medical visualizations (Figure 2.25). Ji Sun’s finger walking in place (FWIP) 

technique [98] allows its user to navigate a virtual world by sliding his fingers on a multi-

touch sensitive surface. 

 

                                         

10 Head-Worn Displays 

11 www.samsung.com/global/galaxy/gear-vr/ 
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Figure 2.25: A miniature version of the 3D data appears to float in the air above the table 
surface. (A digital rendering is superimposed on the photograph to demonstrate the effect.) A 

cutting plane through the volume data is projected (like a shadow) onto the table below, where 
multitouch gestures are used to navigate and interrogate the data. After navigating to a useful 

view of these imaging data of a heart, the user is now defining a smooth 3D curve (e.g., the 
shape of a catheter delivery system) relative to the anatomical data set [118]. 

Manipulating multidimensional data is improved with interaction techniques or 

devices supporting 6DOF (Translation, rotation and tilting). Researchers tried to 

augment the number of degrees of freedom offered by tactile interaction through 

multitouch interactions. Hancock et al. [75] proposed a 5DOF movement with one-touch 

interactions (2DOF input), up to 6 DOF using two-touch interactions (4DOF input) and 

a direct mapping of 6 DOF to three-touch interactions (6DOF input). Some of the take-

aways from their work include that a higher number of touches allows more natural and 

flexible interaction and that the users are able to perform separable simultaneous control 

of rotation, tilting and translation. Jingbo et al. [100] limit the number of fingers needed 

for 6DOF manipulations to two by using a learning-based approach. However, these 

approaches are not natural. Martinet et al. [121] studied the integration and separation 

of degrees of freedom and found that, separating the control of translation and rotation 

significantly affects performance for 3D manipulation. Besançon et al. [26] compared 

tactile interaction to other modalities for 3D data manipulation and demonstrated that 

tactile interaction is not the most suitable to interact with multi-dimensional data. 
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Bergé’s [24] work confirmed that tactile interactions were neither the most efficient, nor 

the most preferred. It requires a dedicated surface to perform interaction [24] and in an 

immersive environment, this can divert the attention of the user from the task to perform 

to the interaction tool, when the dedicated surface is a tablet or a smartphone. It can 

also constrain his movements in the case of fixed tactile display or an interactive tabletop 

[110]. 

2.4.2 Mid-air interactions 

From the Microsoft Kinect12 to the Optitrack system13, a multitude of efficient 

tracking solutions are available to researchers today. They are largely available, affordable 

(Microsoft Kinect), and accurate (Optitrack system). The impact of these solutions on 

the HCI field is palpable. It is even more obvious in environments where the focus is on 

physical exploration of data. As we saw in (Subsection 2.2, Large displays), mid-air 

interactions with all the advantages they offer (unconstrained mobility, light and easy to 

perform) [151, 48, 174] are noticeably used to interact with immersive environments. The 

Hololens14 propose a set of hand gestures to allow users to take action in augmented 

reality: its two core gestures are Air tap and Bloom15. Air Tap is “a tapping gesture with 

the handheld upright, similar to a mouse click or select. This is used in most HoloLens 

experiences for the equivalent of a ‘click’ on a UI element after targeting it with Gaze”. 

The Bloom gesture is ’the “home” gesture and is reserved for that alone. It is a special 

system action that is used to go back to the Start Menu. It is equivalent to pressing the 

Windows key on a keyboard or the Xbox button on an Xbox controller. The user can use 

either hand. Microsoft argues that those gestures were designed with simplicity in mind, 

rather than precision.  

The Hololens has an efficient tracking system which allows users to design their own 

gestures. It has been used in combination with a Microsoft Kinect in Yim’s [198] proposed 

work, that can assist users in analyzing and understanding a topological map, as a virtual 

hologram (Figure 2.26). They proposed mid-air gestures to resize, rotate and reposition 

                                         

12 https://developer.microsoft.com/fr-fr/windows/kinect 

13 http://optitrack.com/ 

14 https://www.microsoft.com/fr-fr/hololens 

15 https://docs.microsoft.com/en-us/windows/mixed-reality/gestures 
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the map as well as several gestures specific to the task at hand (lowering water levels, 

viewing graphs ….).   

 

Figure 2.26: The user is wearing the HoloLens and using Kinect gestures to change the 
rotation of the model [198] 

Radkowski et al. [145] used the Microsoft Kinect to track hand movement and 

recognize hand gestures. They proposed an augmented reality system to perform assembly 

of 3D models of technical systems and designed mid-air interaction techniques to select, 

manipulate, and assemble 3D models of that system. To select an item, users had to move 

a yellow sphere representing a 3D virtual cursor towards the object of interest by moving 

their hand, a collision with the object highlights it, and a fist gesture selects it. 

Manipulating an object (translation, rotation and scaling) is performed by selecting a 

function, a coordinates system or a 3D cursor appears to assist the task. The interaction 

techniques were evaluated and found easy to perform but at the same time, some of them 

were not understood as the authors intended. 

Benko’s [21] Pinch-the-Sky dome interface is an interactive immersive experience 

where users can use mid-air gestures to interact with an augmented dome (Figure 2.27). 

The system answers to speech commands with free hand gestures. The gestures include: 

hand pinch, two hand circle, one hand clasp, speech recognition and interactions with an 
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IR laser pointer. They performed a study in the form of public demonstrations (1000 

participants) and reported the following: the proposed mid-air interaction were simple to 

perform, but understanding how to perform them was not self-evident. The need to give 

further explanation was highlighted. This is an important drawback of mid-air 

interactions.  

 

Figure 2.27: Performing a pinching gesture pans the night sky imagery in World Wide 
Telescope [21] 

Other well-known problems with mid-air interaction are fatigue [40] and without an 

appropriate feedback, ambiguity. Moreover, they are not easily discoverable and need to 

be memorized first, before being used [83, 126]. Finally, finding the right mid-air 

interaction for a given task/action is challenging. Even if designers use the most natural 

real life gestures as the interaction technique for a specific task, it may not be the same 

from one user to another. One of the most used approaches to design mid-air interaction 

is elicitation studies [196]. Piumsomboon et al. [142] compiled a set of gestures to guide 

designers to achieve consistent user-centered gestures in AR. They conducted a 

guessability study focused on hand gestures, they elicited 800 gestures for 40 selected 

tasks from 20 participants. They used the results of the study to create a user-defined 

gesture set for augmented reality interaction. Other work that used elicitation studies to 

design mid-air interaction for immersive environments include [73, 113].  
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Figure 2.28: Variants of hand poses observed among gestures in [142] 

2.4.3 Tangible interactions 

Tangible interaction is a good alternative to tactile and mid-air interactions, as it 

covers their lack of degrees of freedom (necessary to interact with immersive visualization) 

[6, 25, 200]. This aspect of tangible objects allows researchers to propose natural 

interactions, close to what users do daily in real life. One of the grounding works in HCI 

using tangible interaction for immersive environments is Stoakley’s [177] world-in-

miniature approach (Figure 2.29). Upon observing that the then-implementations of 

virtual environments limit what users can use and visualize from the virtual world (the 

users had one single point of view), Stoakley proposed the WIM interface, a tangible 

handheld miniature copy of the life-size virtual environment. Their approach allowed 

users to have a second dynamic viewport onto the virtual words as well as manipulate 

objects in the virtual environment through direct manipulation using the handheld 

physical prop. Informal user observations indicate that users adapted quickly to the 

proposed metaphor and that physical props are helpful in manipulating objects in virtual 

environments.  
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Figure 2.29: A user manipulates the WIM using the physical clipboard and button-ball 
props [177] 

Schkolne et al. [162] proposed an immersive interface for designing DNA components 

for applications in nanotechnology (Figure 2.30). Their system uses tangible 3D input 

devices: a raygun tool: a tangible handheld object in the form of a gun, used for picking 

points in space; tongs: doubly sensed tongs that can detect strong and weak grabs, used 

to move molecules; multipurpose handle tool: a handle containing an action button, a 

menu button and an embedded magnetic motion sensor, used to activate functions like 

drawing. A user study performed with scientist shows that they find the immersive 

interface and the tangible approach more satisfying than a 2D interface due to the 

enhanced understanding gained by direct interaction within the 3D space. 
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Figure 2.30: Using Schkolne’s [162] system to interact with molecules 

Cordeil’s [55] took interest in the mapping of user actions in physical space into the 

space of data in a visualization. They proposed a design space to inform the design of 

interaction technique based on the aforementioned basis. They demonstrate their design 

space with three tangible prototypes (Figure 2.31): Touch-sensitive cube, Physical Axes 

design, Virtual mid-air design. 
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Figure 2.31: Three designs for SD coordinated interaction [55] 

More recent approaches include: Jackson’s [92] lightweight tangible 3D interface for 

interactive visualization of thin fiber structures; Issartel’s [91] portable interface for 

tangible exploration of volumetric data; 

Besançon et al. [26] compared tangible interactions to tactile and the mouse for multi-

dimensional data related tasks. They found that tangible interactions perform better than 

its mouse and tactile counterpart, that tangible’s affordance removes the need for a 

learning phase. However, they point out that the mouse was more precise overall. The 

use of tangibles in mid-air without support may have played a role in that last result. 

While their mid-air usage allows them—like mid-air interactions—to support physical 

exploration of data by not constraining the movement of the user, a prolonged usage in 

that condition would incur fatigue. 
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2.4.4 Mobile and Wearables devices 

Kharlamov et al. [107] argue that the current techniques for 3D selection in VR 

environments are not adapted to the requirements of such a task. They usually use head 

rotation followed by a dwell time or a click of a button on the headset to validate the 

selection. Using the dwell time approach to validate requires the user to keep his head 

static for a certain amount of time, which makes selecting small target extremely difficult 

in addition to causing fatigue of the neck muscle. It may also result in a midas touch 

effect [93] where targets are selected unintentionally. The button approach may cause the 

Heisenberg effect [37], where the click on the headset button for validation moves the 

cursor and results in a miss-selection. To solve those potential problems, Kharlamov et 

al. [107] proposes TickTockRay (Figure 2.32), a smartwatch-based raycasting technique 

for smartphone-based head mounted displays. The technique implements fixed-origin 

raycasting using off-the-shelf smartwatch hardware to perform selection in the virtual 

world. They proposed several approaches to confirm the selection: tapping on the screen 

of the smartwatch, a grabbing gesture, a finger-snapping gesture, and a poking gesture.  

 

Figure 2.32: TickTockRay enables freehand pointing in mobile VR using an off-the-shelf 
smartwatch [107]  

Benzina et al. [23] used a combination of a smartphone’s touch capabilities and his 

sensors to develop a one-handed navigation technique in virtual environments. They use 

the touch capability of the smartphone for translations, and the sensors for rotation 

control. They developed four interaction techniques based on their approach: rotate by 

roll, rotate by roll with fixed horizon, rotate by heading and merged rotation. The 

interaction technique maps a certain number of DOFs of the phone to the VR app (+4). 

They investigated the number of necessary DOF to navigate in a virtual environment 

and found that, the rotate by roll technique, offering 4 DOF provides good performance. 
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They also found that the usage of the roll in smartphones to control the heading in virtual 

environment was preferred and seems to be the appropriate approach for such a task.  

 

Figure 2.33: Steer Based Rotation Control Technique [23] 

Wang et al. [190] presented Object Impersonation, a new HMD metaphor that allows 

the user to manipulate a virtual object from the outside or the inside, by becoming the 

object. The metaphor is based on the use of a tablet in combination with an HMD.  

Smartphones and wearables are a good option when it comes to interaction with 

multi-dimensional data, they offer a large number of degrees of freedom as well as the 

necessary sensor to exploit them, touch capabilities and they can be freely moved in 

space, which does not hinder the movement of the user. However, this mid-air usage can 

induce fatigue. Their potential use in immersive environments may be limited in that, 

their display is not usable in a virtual reality context where the user’s sight is obstructed 

by the HMD. In an augmented reality context, their mid-air usage also incurs fatigue. 

The sensors may produce noise which can impact the precision of handheld devices. Hürst 

et al. [89] evaluated smartphones and tablets based interaction techniques to interact 

with virtual reality and highlighted the unreliability of the sensors equipping them. 
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2.4.5 On-body interactions 

As opposed to the previous modalities described in this section, on-body interactions 

have been scarcely used for interaction in immersive environments. 

Serrano et al. [167] explored the use of hand to face gestures arguing that it is well 

suited for HDWs (Figure 2.34). They performed a guessability study that showed that 

participants preferred hand-to-face gestures to interact with the HWD. Their findings 

include: participants agreed on similar hand-to-face gestures for panning and zooming; 

the cheek was the most promising area of the face for zooming and panning due to its 

large interaction surface and lack of fatigue; hand-to-face gestures were as acceptable 

socially as the HWD ones.  

 

 

Figure 2.34: Proposed hand-To-Face input for navigation by [167] includes: a) Panning, b) 
Pinch zooming, c) Cyclo zooming, d) Rotation zooming 

Dobbelstein et al. [59] proposed the use of the belt as a tactile surface to interact with 

HWD. Encircling the user’s hip, the belt offers a wide input space. They mapped quickly 

accessible information and applications on the belt. With social implications in mind, 

they conducted a study to evaluate their approach. They found that users considered 

most of the area on the belt appropriate for short interactions, and only the front area, 

above the trouser pockets as acceptable for long interactions.  
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Figure 2.35: Dobbelstein et al. [59] belt technique  

Wang et al. [191] focused on text input for smart-glasses: they proposed PalmType, 

an interaction technique that enables users to type with their fingers on the palm. 

Other on-body interaction techniques that were designed for other environment and 

could be integrated into immersive environments include the following: 

Skinput [77], which is a technology that allows the skin to be used as an input device, 

it provides an always available and naturally portable on-body input system. This 

approach could easily be adapted to immersive environments. 

Belly gestures [181], which is an interaction technique using the belly as support for 

interactions. The authors argue that the belly’s large surface which is easily reachable by 

two hands in any circumstances (standing, walking, running…) is an appropriate surface 

for interaction.  

On-body interaction techniques are an interesting approach that needs to be further 

explored for immersive environments. They allow eyes-free interactions by exploiting the 

proprioception16 capabilities of users. They do not divert the attention of users from the 

task at hand. However, without being augmented by a complimentary device, these 

                                         

16 https://en.wikipedia.org/wiki/Proprioception 
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approaches offer a limited set of possible gestures, which impacts the number of tasks 

that can be performed. Furthermore, on-body interaction do not offer a high degree of 

precision, which can make them unsuitable for tasks like data visualization in immersive 

environments.  

2.4.6 Summary 

In this section, we introduced immersive environments as well as the central benefits 

they offer for data visualization: Their spatial abilities allowing a spatial comprehension 

of data; their support of physical exploration which leads to a more natural interaction 

with data; their performant tracking systems. 

We identified the challenges of interaction with such environments, often task-related, 

and reviewed a range of interaction solutions designed to improve interaction in these 

environments by modality of interaction: Tactile interactions; mid-air interactions; 

tangible interactions; smartphones and wearables based interactions; on-body interaction. 

We highlighted the limitations of these solutions: inadequate degrees of freedom for 

the multidimensional tasks performed in these environments; hindering the physical 

exploration they allow; visual occultation; lack of accuracy; fatigue. 

The last contribution of this work aims to improve interaction with immersive 

environments through a new paradigm: on-body tangible interaction. 

Tangible interactions offer several degrees of freedom. When used mid-air, the tangible 

object does not hinder the movement of the user when exploring data. When used on an 

always—available body support, fatigue is minimized and the accuracy of interaction is 

improved.  
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2.5 Conclusion 

In this chapter, we introduced large displays, multi-display environments and 

immersive environments. We identified the challenges in designing solutions to improve 

interaction with these environments and reviewed the state-of-the-art of existing 

solutions.  

In the following chapters, we report on our efforts to improve interaction in each one 

of the environments discussed above: first, through split-focus, an overview+detail multi-

display interaction interface addressing the challenge of interaction with multiple regions 

of interest of the same overview in large displays (Chapter 3); second, through the 

exploration of everyday objects to design quick and opportunistic interaction techniques 

for MDEs in a public context and TDome, a multi-degrees of freedom device to fluidify 

interaction with MDEs in a work context; finally, through the exploration of a new 

interaction paradigm, on-body tangible interactions, to improve interaction with 

immersive visualizations. 
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3 Interaction with Large Displays 

3.1 Introduction 

The work presented in this chapter was originally inspired by our collaboration with 

biologists carrying research on cancer. They archive knowledge in graphs called molecular 

interaction maps (MIM) [112]. These MIM graphs contain several types of nodes 

(molecules, protein, etc.) and connections. There is no limit to the number of nodes that 

can be connected by one connection and each connection can also be connected to other 

connections, e.g. genes playing the role of catalysts of this connection. As research on 

cancer progresses, results are added to existing MIM maps, which grow extremely large—

the Alzheimer MIM map contains 1347 nodes—[128] making them difficult to read and 

edit using the traditional panning+zooming [64] interactions (See Figure 3.1). Moreover, 

connected nodes can be located far apart from each other, thus, requiring even larger 

surfaces to visualize the data. 

 

Figure 3.1: MIM map (left) and detail (right) illustrating the density and complexity of 
such graphs 

The context described above is not specific to the biology field as data lies at the 

heart of many other scientific fields. A great deal of efforts have been devoted to simplify 

working with these ever-growing data (cf chapter 2). Overview+Detail (O+D) interfaces 

are one of these efforts and a well-known approach for data visualization and 

manipulation [61]. They allow the user to have an overview of the data, and a more 

detailed view that allows him to finely explore the data while keeping the overview. 
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In this work, we will specifically focus on these visualization interfaces. Despite the 

advantages the offer when working on large datasets (like graphs), these interfaces reach 

their limits when it comes to work on multiple regions of the overview simultaneously. 

An example from the context of this work would be connecting distant nodes of very 

large graphs for example. Moving the detailed view repeatedly from one region to another 

is tedious and interaction complexity increases with the number of regions to work on 

[64, 66].   

To address this situation, several techniques have been designed in single or multi-

display configurations to support the use of more than one detailed view simultaneously 

[61, 13, 41, 97]. 

Multi-display systems have been used in an overview+context configuration [9, 50]. 

Rashid et al. [149] found that for searching on large maps, a multi-device approach was 

better than a simple mobile one. Cheng et al. [47] showed that, in a focus+context multi-

surface technique, moving the position of the focus in a miniaturized view was preferred 

over other techniques. In our work we apply this approach to multi-detail interaction. 

The use of multiple detailed views has been proposed to allow working simultaneously 

on multiple regions of large contexts [61, 13, 97]. Polyzoom [97] allows multi-scale and 

multi-focus exploration in 2D visual spaces by offering the user the possibility to create 

several hierarchies of zoomed views. Melange [61] uses a distortion-based technique that 

offers the possibility to bring together two regions of a large space by folding them. 

SpaceFold [41], inspired by Melange, introduces a multi-touch interaction technique to 

improve the manipulation of the folds.  

Several works have focused on the design of a set of rules for working with multiple 

views [10]: the “rule of diversity” recommends the use of one view per information type 

and the “rule of parsimony” suggests using multiple views minimally. However, none of 

these works has investigated the optimal number of detailed views to use. The optimal 

number of detailed views that will benefit complex tasks is thus still an open question.  

In this chapter, we compare the use of different number of detailed views to interact 

with very large graphs, such as the aforementioned MIM maps.  
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Our work aims at answering two questions: 1) are multiple detailed views better than 

one to interact with large graphs? And 2) what is the optimal number of detailed views 

needed to perform tasks with multiple graph nodes? Answering these questions is not 

obvious: using a single detailed view constrains the user to translate the view sequentially 

to each interesting region of the graph whereas using several detailed views allows parallel 

access to different locations of the graphs but limit the size of each detailed view to avoid 

the need for a larger screen real estate to display them. 

To answer these questions, we implemented an interface based on the O+D scheme. 

Our interface supports the simultaneous use of up to 4 detailed views independent from 

each other. The overview (the overall graph) is displayed on a large screen while the 

detailed views are displayed on a single tablet: we hereafter refer to them as the split 

views. Deploying O+D interfaces on multiple displays has been shown to improve data 

visualization and manipulation [47, 149]. 

We experimentally compared three values for the number of split views (1, 2 or 4) in 

a node connection task, where the user is asked to create a link between 2, 3 or 4 nodes. 

These types of multi-node links are usual in large graphs such as MIMs [112]. 

3.2 Using an overview + multi-detail interface 

to interact with large surfaces 

To contribute to the previously identified challenges of overview + detail and better 

understand the potential advantages of using multiple detailed views, we first focused on 

the design of such a solution. 

3.2.1 Rules for multiple views in information visualization 

Baldonado et al. [10] defined several rules for multiple views interfaces. These rules are 

categorized in two groups:  

- Rules to help designers and users assess the suitability of multiple view systems 

for their applications (R1: Diversity, R2: Complementarity, R3: Decomposition, R4: 

Parsimony) 
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- Rules to help designers and users make design choices related to their multiple 

view system as well as to help usability experts and system evaluators pinpoint trouble 

spots in an existing system (R5: Space/Time resource optimization, R6: Self-Evidence, 

R7: Consistency, R8: Attention management) 

The Diversity rule (R1) indicates that a single view containing a multitude of diverse 

data and requiring the user to simultaneously assimilate may create significant cognitive 

overhead. The diversity of the data to visualize is one of the principal reasons to consider 

multiple view systems. The Complementarity rule (R2) states that another reason to 

consider multiple view systems is the need to understand the relation (correlations and/or 

disparities) between two components. The authors argue that multiple views leverage 

perceptual capabilities to improve understanding of relations among views. The 

Decomposition rule (R3) stipulates that partitioning complex data into multiple views 

create manageable pieces of information and allow a better understanding of the different 

dimensions composing it. The last rule of the first category, the Parsimony rule (R4), 

calls for designers to examine the user’s learning costs and the computational and display 

costs of additional views by applying the 3 rules described above. Indeed, in addition to 

the cost of context switching, the use of multiple views introduce system complexity. 

Designers must take the cost of such a system in consideration when deciding if a 

multiple-view system is adequate for their application. 

The second category of Baldonado’s [10] guidelines concerns the use of multiple views. 

The Space/Time resource optimization rule (R5) indicates that the display space as well 

as the computational time to present multiple views side-by-side are two important 

aspects of designing such systems. Thus, they encourage designers to balance the spatial 

and temporal costs of presenting multiple views with the spatial and temporal benefits of 

using the views. The Self-Evidence rule (R6) focuses on the use of adequate feedback. It 

recommends the use of perceptual cues to make relationships between multiple view more 

visible to the user. The Consistency rule (R7) indicates that in addition to feedback, 

consistency in designing the interface of multiple views helps the user learn to use the 

system more quickly. Through the last rule, Attention management (R8), the authors 

point out that having multiple views requires the system to direct the user’s attention to 
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the right view at the right time, this would prevent the user from continuously monitoring 

the system for events that demand his attention.    

Table 3.1 below, presents a summary of these rules as described in [10]: 

ID Rule Title Rule description 

R1 Diversity 
Use multiple views when there is a diversity of attributes, 

models, user profiles, levels of abstraction, or genres. 

R2 Complementarity 
Use multiple views when different views bring out 

correlations and/or disparities. 

R3 Decomposition 

Partition complex data into multiple views to create 

manageable chunks and to provide insight into the 

interaction among different dimensions. 

R4 Parsimony Use multiple views minimally. 

R5 

Space/Time 

resource 

optimization 

Balance the spatial and temporal costs of presenting multiple 

views with the spatial and temporal benefits of using the 

views. 

R6 Self-Evidence 
Use perceptual cues to make relationships among multiple 

views more apparent to the user. 

R7 Consistency 
Make the interfaces for multiple views consistent, and make 

the states of multiple views consistent. 

R8 
Attention 

management 

Use perceptual techniques to focus the user’s attention on the 

right view at the right time. 

Table 3.1: Summary of Baldonado et al.’s [10] guidelines for using multiple views in 
information visualization 

3.2.2 Interface Design 

Based on these recommendations, we designed and implemented an O+D 

visualization interface that consists of a large screen to display the contextual information 

and a tablet to show a magnified version of selected region(s) of the large space in addition 

to additional information about the selected region. We describe the three main views of 
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our interface (overview, split views and translation view) as well as a set of interaction 

techniques that allow the user to move the split-views.  

3.2.2.1. Split views 

Our technique allows the user to have up to four independent split views at the same 

time (Figure 3.2), offering a detailed view on a graph region. We implemented three 

configurations for the multiple views on the tablet: 1-view, 2-views and 4-views. Using 

split views allows to decompose (R3) the complex graph rendering. 

 

Figure 3.2: The three explored versions of split-focus 

With the 1-view technique (Figure 3.2, A), the split view occupies the entire tablet 

display; with 2-views (Figure 3.2, B), each view occupies half; and with 4-views a quarter 

(Figure 3.2, C). This design conforms to the rule of consistency (R7) as the overall 

detailed area size is consistent over the 3 versions of our technique and when several focus 

are displayed their relative size is consistent as well. It also presents different conditions 

of space/time resource allocation (R5): sequential for 1-view, and side-by-side for 2-views 

and 4-views.  

A swipe gesture inside one of the split views moves the underlying graph in the same 

direction: this behavior is consistent (R7) with regular map interactions on mobile devices. 

Finally, when the user selects a node in one of the split views, appropriate feedback is 

provided so that users’ attention (R8) is focused on the appropriate view. 

3.2.2.2. Overview 

The overview displays the entire graph on a large display. The ratio between the 

overview size and the split views size is 9 for the 1-view configuration (overview is 9 times 

bigger), 18 for 2-views and 36 for 4-views. These ratios were chosen to explore the effect 

of a zoom factor bigger than 30 (threshold identified in [165]). A contour color is applied 
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to the split views on the tablet and to its representation on the overview to help the user 

establish the relationship between the points of view (R6) (Figure 3.3). 

3.2.2.3. Translation view 

We call a translation technique the interaction allowing the user to explore his data 

by moving the detailed views to the region of interest. In our interface, positioning the 

split views can be achieved using two translation techniques: 1) a regular pan on the split-

views; 2) A translation interface called translation view. The translation view is activated 

when the user presses the black button “switch” displayed on the tablet (Figure 3.3).  
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Figure 3.3: Split-Focus 

The translation view provides a representation of the position of the 1, 2 or 4 split 

views on the overview. In the translation view, each split view position is represented 

using a view icon. Given the density of the graphs, displaying a miniature of it on the 

tablet would be useless. Therefore, the view icons are displayed on a void background. 

By looking at the overview, the user can use multiple (R1) view icons in complementarity 

(R2) for selecting multiple nodes. The user can adjust the position of one or several view 

icons simultaneously by direct touch manipulation as recommended in [47]. Using two 

hands and the multi-touch screen, the user can theoretically translate 4 view icons at the 

same time. Closing the translation view restores the split views. In our configuration, no 

zoom is allowed: this ensures a higher consistency over the split views (R7). 

3.3 User Study 

Using our multi-view interface, we conducted a controlled experiment to evaluate the 

effect of using multiple split views (1, 2 or 4) when connecting various number of nodes 

(2, 3 or 4) situated on different areas of large graphs. 

3.3.1 Task 

Participants were asked to create a connection between 2, 3 or 4 nodes. The overview 

displayed only the nodes to connect on a white background. To connect several nodes, 

participants had to select them by touching each node in the split views displayed on the 

tablet. Selecting one node required translating one of the split views displayed on the 

tablet so that the node becomes visible. On each trial, participants could translate each 

of the split views with swipe gestures directly in the split view or through the 

Figure 3.4: Experiment setup 
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manipulation of its corresponding view icon in the translation view. Selection was 

validated with a single tap on the node, which was then highlighted in blue. Before each 

task, the position of the split-views were reset to a default position.  

3.3.2 Node positions 

To define the position of the 2, 3 and 4 nodes to connect, we decided to fix their 

distance from the center of the overview and change their relative distance as well as 

their distribution. We used eight absolute positions corresponding to the intersection of 

an ellipse positioned at the center of the overview with horizontal, vertical and diagonal 

axes (Figure 3.5). The ellipse shape is used so that the positions of the nodes are spread 

across the width and height of the tablet. We selected 10 combinations of these positions 

for each number of nodes, equilibrating the number of neighbor nodes (i.e. on consecutive 

positions) and the cases where all nodes were far from each other with the cases where 

nodes were close to each other. 

 

Figure 3.5: Nodes repartition 

3.3.3 Participants 

We recruited 12 participants (4 females) from our local university. They were 26 years 

old on average (SD 4.7) and 11 of them were right-handed. All participants had used 

touchscreen tablets before. No specific skill was required. 

3.3.4 Apparatus 

The experimental apparatus consisted of a multi-device setting involving one PC and 

one tablet. The PC had a 23 inches display, showing the overview (1920x1080px). Nodes 
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on the overview measured 15x37px. The tablet was a 10.5 inches Samsung galaxy tab S17 

(2560x1600px). Nodes on the split views (i.e. the targets to touch) on the tablet measured 

40x157px. On the translation view, each view icon measured 826x526px for 1-view 

configuration, 413x526px for 2-view configuration and 413x263px for 4-view 

configuration. A Dlink DIR-61518 router was used to establish a wireless connection 

between the workstation and the tablet. We placed the tablet on a desk and allowed users 

to interact with both hands, a usual configuration in multi-display settings to avoid 

fatigue during long interactions and to benefit from multi-touch input [154]. The tablet 

rested on its cover at a 60° angle and in the same field of view than the large display, 

which has been shown to be paramount in multi-display environments [42]. Participants 

sat at 1m from the display and we ensured that there were no light reflections on the 

tablet. 

3.3.5 Experimental Design  

The experiment followed a 3x3 within-subject design with number of split views 

(NViews factor: 1V, 2V or 4V) and number of nodes to connect (NNodes factor: 2N, 3N 

or 4N) as factors. The NViews factor was counterbalanced by means of a 3x3 Latin 

square: three blocks were run, one for each value of the NViews factor. Trials in a block 

were grouped by the NNodes factor. Each subject performed 3 NViews x 3 NNodes x 10 

predefined Node Positions x 3 repetitions = 270 trials. The training consisted of one block 

for each value of the NViews factor (36 trials in total). The experiment lasted 60 minutes 

on average. 

3.3.6 Procedure and instructions  

To begin a trial, the participant pressed a “start” button displayed in the center of 

the tablet. Between each block, the user was informed via an information screen that he 

was about to start another condition. Participants were asked to finish each trial as 

quickly as possible using any number of hands or fingers. They were told they could take 

                                         

17 https://www.samsung.com/fr/tablets/galaxy-tab-s/ 

18 https://eu.dlink.com/fr/fr/products/dir-615-wireless-n-300-router 
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a break if required between trials. At the end of the experiment, participants were asked 

to fill a System Usability Scale questionnaire (SUS). 

3.3.7 Collected Data  

We logged all touch events from the screen tablet. We measured trial completion time 

from stimulus onset to screen release, the number of actions to complete each trial and 

the number of switches between overview and split views on the tablet. We also logged 

the number of view icons translated simultaneously, i.e. the number of fingers performing 

a view icon translation at the same time. 

3.4 Results 

We used a Shapiro-Wilk test to determine the normality of collected data. Our data could 

not be normalized, so we used a non-parametric Friedman test to compare more than 2 

conditions and Wilcoxon tests otherwise. When needed we used the Bonferroni correction. 

3.4.1 Completion time 

 

Figure 3.6: Trial completion time per number of nodes and number of views (95% IC). 

Friedman tests reveal a significant effect of the NViews on completion time for each 

number of nodes (2N: χ2(2) = 34.58, 3N: χ2(2) = 6.61, 4N: χ2(2) = 20.30 with p <.01). 

A Wilcoxon test confirms a significant difference between 1V and 2V (Z= -2.98, p <.01), 
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and between 1V and 4V (Z=-3.05, p <.01). Overall, when performing the task using 2V 

and 4V, participants took respectively 20% and 35% less time than with 1V (Figure 3.6). 

There is no significant difference between using 2V and 4V when connecting 2 nodes, but 

using 4V, participants required 15% less time than with 2V when connecting more than 

two nodes (3 nodes: Z= -3.06, p <.01, 4 nodes: Z=-3.06, p <.01). 

3.4.2 Switches between Translation and Detailed view 

A Friedman test reveals a significant effect of the NViews on the number of switches 

between the Translation view and the Detailed view (χ2(2) = 18, p <.01). A Wilcoxon 

test reveals a significant difference between 1V and 2V (Z=-2.98, p <.01), between 1V 

and 4V (Z=-3.06, p <.01) and between 2V and 4V (Z=-3.06, p <.01). The number of 

switches decreases with the NViews: 2.2 on average for 1V, 1.6 for 2V and 1.0 for 4V (see 

Figure 3.7).  

 

Figure 3.7: Number of switches between the translation and detailed views (95% IC) 

3.4.3 Simultaneous icons translation 

A Friedman test reveals a significant effect of the NViews on the number of view icons 

translated simultaneously (i.e. the number of fingers moving an icon at the same time in 

the translation view) (χ2(2) = 22, p <.01). A Wilcoxon test reveals a difference between 
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1V and 2V (Z= -2.93, p <.01), and between 1V and 4V (Z=-3.06, p <.01). For 1V, the 

number of icons used at the same time is slightly under 1 (0.99) because the user could 

pan inside the split view without switching to the Translation view. In that case no icon 

translation was recorded.  

Interestingly, we found no difference between the number of view icons translated 

simultaneously in 2V and 4V, even though users could employ their two hands to 

translate the view icons. In these conditions, whatever the number of nodes to connect, 

the average number of view icons translated was very similar (2V: 1.82; 4V: 1.83), even 

when more than 2 nodes had to be connected (see Figure 3.8). 

 

Figure 3.8: Nb. of icons moved at the same time (95% IC) 

We could expect users to move 3 or even 4 icons simultaneously by using a bimanual 

multi-touch gesture under the 4V condition. This actually happened, but in low 

proportion: over the 1080 trials done with 4V, 20% were performed moving only one view 

icon at the same time, 77% moving two icons at the same time, 2% (22 trials) moving 

three and 0.5% (6 trials) moving four icons (the rest 0.5% of trials did not involve moving 

any icon). The same user did 15 of these 22 trials (75%) performed with 3 fingers. Five 

participants did the other 7 trials: they tried the gesture once or twice but did not use it 

any longer. The analysis of the 6 trials done with four fingers raises similar results: one 

subject did it 2 times, and four users tried it once. Instead, moving simultaneously two 
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icons seemed affordable for most participants. We observed that most of these bi-touch 

gestures were done with one finger of each hand in a bimanual coordinated gesture. 

3.4.4 SUS Scores and User preference 

SUS scores reveal that the 1V and 4V conditions were deemed good (75 and 80 

respectively) while the 2V was deemed excellent (86). Interestingly, when asked, users 

preferred the 4V condition for the tasks where they had to work on more than two nodes 

while opinions were mixed for the task with two nodes only: some participants liked 

having four views at hand, others disliked having smaller views than under the 2V 

condition. 

3.5 Discussion and Perspectives 

3.5.1 Possible ameliorations of the split-view interface 

Below, we discuss two possible improvement of the split-view interface. The first concerns 

the translations techniques and the second the coherence of the split-views. 

3.5.1.1. Translation technique 

A possible improvement for the translation technique resides in the speed of 

translations. When interacting with a large information space, it is important that the 

position of the detailed view can be adjusted quickly and precisely. The translation view 

is quick and it can be precise if the information space is not too large. However, with a 

large information space combined to the small display on tablets, moving detailed view 

with precision becomes difficult. One possible solution to that would be to use the regular 

pan, directly on the detailed view while allowing the user to control the speed of 

translations. We can exploit the number of fingers used to perform the translation to 

achieve that. The result of a one finger translation would be a regular translation, the 

result of a two finger translation would be a translation twice the speed of the regular 

one, and so on.  
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3.5.1.2. Coherence of the split views configuration 

 

Figure 3.9: Examples of coherent (left) and incoherent (right) configurations of the split 
views. 

One of the problems resulting from a multi-view approach is the coherence of the 

detailed-views positions. As the user are able to translate the views freely on the overview, 

a situation where the disposition of the detailed-views on the tablet may not be coherent 

with their icons on the overview can arise as in (Figure 3.9-right).  

We developed an improved version of the split-views interface that would prevent an 

incoherent configuration from happening, the new version uses what we call locks. The 

overview is divided into 4 subregions of equal size, the principle is to lock each split view 

in a sub-region of the overview so that the spatial configuration of the split views on the 

tablet is always coherent with the icons on the overview (Figure 3.10, A). The top-left 

detailed view, represents, and can move only in the top-left sub-region of the overview. 

The same principle is applied to the three other detailed views. 

The user has the possibility to release the locks between 2 subregions allowing the 

split views to be translated in the newly created subregion (opening the lock between the 

green and magenta detailed views in (Figure 3.10, B). Openning the 4 locks would make 

all the overview available to all the split views. 

This approach is similarly applicable to the 2-views version of the split-view interface. 
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Figure 3.10: A possible solution to the coherence problem 

3.5.2 Perspectives 

While previous work on symmetric bimanual interaction (where each hand is assigned 

an identical role) has already highlighted its benefit in some settings [9, 127], we are only 

aware of one work [68] exploring symmetric bimanual multitouch interaction (each finger 

performs a pointing gesture on a different target). In this previous work, up to 47% of 

the trials for some tasks were performed using multiple fingers in a bimanual setting. In 

contrast, our results indicate that symmetric bimanual multi-touch input is hard to 

perform. We believe these results are highly dependent on the task. Therefore, there is a 
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need to further explore the factors influencing symmetric bimanual multi-touch 

interaction. 

Given our findings, a perspective to our work could concern three design questions. 

First, It would be interesting to explore the limits of the number of views. In this work, 

to respect the guidelines regarding the zoom ratio between a detailed view and an 

overview, we limited the number of detailed views to 4. Generalizing the results to 

configurations of more than 4 detailed views is not feasible without altering the design of 

the interface, whether it relates to the size of the screen displaying the detailed views or 

a mechanism to display 4 detailed views at a time and switch between them. In both 

cases, it is necessary to conduct a further experiment to evaluate the new design . Second, 

it would be interesting to explore how to improve bimanual multitouch interactions to 

facilitate the translation of several split views at the same time. One idea could be to 

study combinations of fingers that can be moved synchronously and to help the user in 

employing these fingers. Third, as most participants used only one finger of each hand, it 

would be interesting to consider other potential uses of the remaining fingers: for example 

additional fingers might act as modifiers to bring split views together, or to move views 

to specific positions such as corners, or to dynamically release locks. 

3.6 Conclusion  

In this work, we studied the effects of splitting the detailed view in an overview+detail 

interface to work on large graphs. We implemented an O+D multi-displays interface 

where the overview is displayed on a large screen while 1, 2 or 4 split views are displayed 

on a tactile tablet. We experimentally evaluated the effect of the number of split views 

according to the number of nodes to connect. We evaluated three multi-view 

configurations: one detailed view (1V), two split views (2V) and four split views (4V). 

Overall, results show that using two or more split views is significantly faster than using 

only one detailed view. Results reveal that using 4 split views is only better than 2 split 

views for working on more than 2 regions of the graph.  

An interesting finding of our experiment is that, when using 4 split views, users did 

not take full benefit of bimanual multitouch interaction to translate several view icons at 
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the same time. Most of them (77%) used a sequential approach, first using one finger of 

each hand to move two icons, and then moving the two remaining view icons. 
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4 Interaction with Multi-Display 

Environments 

4.1 Introduction 

Multi-display environments (MDEs) are more and more prevalent in our daily life. 

Nowadays, interaction with MDEs is not limited to work environments only: they are 

used at home, with TVs, monitors, laptops, tablets and smartphones; in public places, 

where many displays have been installed in recent times, either to display commercials 

(outdoor advertising), give us directions (malls) or information about the delayed 

departure time of a train or plane (Airports, Train stations, …). Today, whether in a 

professional context or in our personal lives, we are overequipped with devices containing 

displays. The environments created by their combination is what we call multi-display 

environments. They combine multiple displays to offer the user another way of visualizing 

and interacting with information.  

This type of environments have shown significant value for interacting with 

heterogeneous data sources and in multiple contexts such as 3D exploration [24], 

collaborative scenarios [36], crisis management [44] and scientific data visualization [168]. 

They offer numerous advantages for organizing information across displays, for enhancing 

individual and group work, for providing support to peripheral information and for 

extending the interaction space.  

Interaction with each one of these individual displays has been substantially explored: 

tactile interactions for smartphones, mouse and keyboard for a PC, touchpads for laptops 

to cite the most common interaction techniques. But these interaction techniques are not 

as efficient when used in a multi-display context in which the various displays do not 

necessarily share the same characteristics (display size, form, orientation) and input 

capabilities: for instance, tactile interactions are not appropriate for distant displays, and 

the mouse is not efficient for covering large display areas. For these reasons, designing 

interaction techniques for MDEs is a complex task.  
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In addition, the context in which the MDE is deployed is also of importance for the 

design process. MDEs deployed in a public context require interaction techniques that 

respect the personal space of the user, are easy to learn and well integrated in the 

environment. In a work environment, the user needs an efficient interaction technique, 

allowing him to switch between displays and redirect content without interrupting his 

task flow.  

In section 4.2, we present an approach based on the use of everyday objects as an 

interaction medium in MDEs in a public context. We detail the results of a creativity 

study conducted to generate ideas on how to use physical objects to interact with public 

MDEs and/or the content displayed on them. In section 4.3, we propose a novel device, 

TDome, partially based on the results of the creativity study (section 4.2), for interaction 

with MDEs in work contexts. We present the characteristics of the device and its 

suitability to MDEs. Then, we focus on the usability and comfort of the device through 

a set of studies. Finally, we explore the mappings between the feasible gestures with the 

device and the main MDEs tasks.  

4.2 Interaction with MDEs in a public context 

MDEs in public environments (such as train stations or airports) offer little or no 

means of interaction with the displayed information [104, 137]. One reason is the absence 

of adequate interaction techniques. We argue that this is in part due to the difficulty of 

designing such interaction techniques. A difficulty that stems from the necessity of 

fulfilling several interaction requirements specific to the these environments.  

Substantial amount of research focused on the use of smartphones and smartwatches 

as interaction tools [24, 35, 133, 164]. This approach fail to respect the personal space of 

the user through the installation of third-party applications, necessary for the interaction 

with the MDE, on his personal device. Other approaches use tactile gestures [188, 139]: 

while this is one of the most widespread and accessible interaction techniques for public 

MDEs, it limits the interaction space to the accessible parts of the displays. Other 

researches proposed the use of gestural interaction techniques [189]. However, this 

approach is ambiguous and does not offer enough visibility of the possible gestures 

without a learning phase, one that the passing-by users of these MDEs do not necessarily 

have. Tangible interactions are a good alternative to the aforementioned approaches. 
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They rely on natural gestures. These gestures are often suggested by the physical 

characteristics of the objects used [171]. However, this approach is dependent on the 

availability of objects around the MDE. We propose to overcome this limitation through 

the use of everyday objects, which can be found on or around the user. This approach 

offer a quick, natural and opportunistic way of interacting with public MDEs. In this 

section, we explore the use of everyday objects to perform common tasks in a public 

MDEs. We present a study that was conducted in the form of a creative session and 

which aim was to identify the way to use objects of different shapes and materials to 

perform common tasks in MDEs. We amend an existing taxonomy to classify the 

proposed interaction techniques. Finally, we discuss the results and the main lessons 

learned from this creativity session. 

4.2.1 The Creativity Session 

We conducted a creativity session focusing on the use of everyday objects to interact 

with public MDEs. During this session, we asked participants to come up with ideas on 

how to use predefined objects to interact with public MDEs and/or the content displayed 

on them. In this section, we present the list of objects used, the proposed tasks and a 

detailed description of the creativity session. 

4.2.1.1. Objects used during the session 

We based our objects list on the work done previously by Pohl et al. [143], in which 

the authors identify the most common objects around us through a participative 

production service. In their work, they extracted the most common objects around the 

users’ smartphones and classified them according to their forms in 5 categories: spherical, 

semi-spherical, cylindrical, rectangular and complex. We have adopted this categorization 

with some modifications (tFigure 4.1): we combined the spherical and semi-spherical 

categories due to their similar physical characteristics; we redefined the complex category 

as a composite category so it includes not only the object which form is not Spherical, 

Cylindrical or Rectangular but also objects made up of at least two objects belonging to 

the other 3 categories. As we suspected that the material of the object may play a role in 

how the object is used, we proposed for each category two objects made of different 

materials: Soft, Rigid. 
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tFigure 4.1: Objects used in the creativity session 

4.2.1.2. We did not limit our list of items to those that are more likely 

to be available in our daily lives in a public context. 

Instead, we preferred to chose objects that are 

representative of the different categories of objects 

present in our daily lives.Apparatus 

The multi-display environment used for this creativity session consisted of an 

interactive table, two video projectors and a monitor (Figure 4.2). The interactive table 

was put in the center of the system with two video projectors at its sides. The monitor 

was placed between the two projections (Figure 4.2). The interactive table, made by the 

company Immersion was 42 inches wide and had a resolution of 1920x1080. The two 

projectors had resolutions of 1920x1080 (Sony) and 1600x1050 (Sanyo). The monitor had 

a diagonal of 26 inches and a resolution of 1920x1080. 
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Figure 4.2: The MDE setup used in the creativity session and the content displayed on each 
screen 

4.2.1.3. Context of the creativity session 

The work described in this chapter was carried out in the context of the neOCampus 

project (described in Chapter 6), the scenario chosen for the creativity session was in line 

with one of the main objectives of the project: reducing energy consumption and costs in 

the local university campus. The multi-display environment fits the apparatus described 

in 4.2.1.2.  

In this setup; 

 The interactive tabletop displayed a map of the campus (Figure 4.2, 

Thumbnail 1). The user could interact with the map using pans and zooms to 

choose the building (s) he wanted to simulate the energy consumption for.  

 The chosen building was then displayed on one of the “floor” displays (numbered 

2 in Figure 2, Thumbnail MDE). These two displays allowed the user to choose 

a floor of the building and visualize its energy consumption (Figure 4.2, 

Thumbnail 2). 

 The control display (numbered 3 in Figure 4.2, Thumbnail MDE) contained a set 

of tools to manage the simulation (Figure 4.2, Thumbnail 3). The controls were 
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arranged horizontally and vertically one after the other. To simulate the energy 

consumption of a building, the user had to select the display in which the building 

was shown and manipulate the controls.  

4.2.1.4. Participants 

8 volunteers (3 female) aged 27 on average (SD = 8.58) from our laboratory 

participated to the creativity session. The group of participants was composed of 3 

doctoral students, 4 master students and an assistant engineer. Participants had varying 

experience with tangible interactions, 2 of the participants had expertise in tangible 

interactions. 4 were involved in the neOCampus project. 

4.2.1.5. MDE Tasks 

The set of tasks described in this paragraph represents the most common tasks done 

in MDEs. In the context of our study, they translate as follows: 

 Task N° Task in the scenario of the creativity session 

Interaction 

with data 

Pan 

1 
Pan on the map to select a building (performed 

on display 1,Figure 4.2) 

2 
Choosing a control to manipulate (performed on 

display 3,Figure 4.2) 

Zoom 3 
Zooming on the map to select a building 

(performed on display 1,Figure 4.2) 

Interaction 

with the 

MDE 

Content 

transfer 

between 

displays 

4 

Sending the “building selected” information from 

display (display 1, Figure 4.2) to one of the floor 

displays (display 2,Figure 4.2). 

Display 

selection 

5 
Selecting one of the floor displays 

(display 2,Figure 4.2) 

6 
Selecting multiple floor displays 

(display 2,Figure 4.2) 
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Interaction 

with the 

UI 

Validation 7 

Validating the changes made on the controls 

display (Selecting one of the floor displays 

(display 3,Figure 4.2) 

Table 4.1: Most common tasks in MDEs adapted to our creativity session’s scenarios. 

4.2.1.6. Procedure 

The objective of the creativity session was to find interaction techniques for the 7 

predefined tasks described in (4.2.1.5) and for each object of the list described in (4.2.1.1) 

(tFigure 4.1). To limit the session to a reasonable duration and avoid fatigue, we 

separated the 8 participants into 4 groups of 2. For each task, each group was responsible 

for a category of objects (including a soft and a rigid version) and had to propose 

interaction techniques for the objects belonging to it. The objects were randomly 

redistributed to the 4 groups at the beginning of each task. We made sure that each 

group, at the end of the study, had used each category of objects at least once. The 

creativity session was conducted as follows: 

 2 minutes of introduction: each task began with a 2 minutes introduction where 

the task to perform was detailed to the participants and the objects were 

distributed to each group. An example of interaction with each object for the 

current task was given during the distribution process to stimulate the 

participants’ creativity. 

 5 minutes of thinking and discussion: each group had to think of ways to use the 

provided objects to perform the task at hand. The interaction techniques proposed 

had to be noted on post-it notes and classified from the most promising to the 

least promising.  

 2 minutes of presentation: each group had to present their ideas, from the most 

promising to the least promising. At the end of the restitution of each task, all 

the participants had to vote to choose their preferred idea and object for the task 

at hand. 
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4.2.1.7. Collected data 

During the restitution part of the session, we noted the ideas proposed by the 

participants. At the end of each task, participants were asked to provide the Post-it notes 

on which they wrote their ideas. In addition to the written notes, we also filmed and 

recorded the creativity session so that we could go back to the videos to annotate the 

exact gestures made by the participants. 

4.2.2 Classification of the ideas -Taxonomy- 

Participants produced a large variety of gestures with the objects at their disposal 

during the creativity session. We analyzed and classified these gestures using a taxonomy 

we inferred from the results of the session. The taxonomy is composed of 3 dimensions 

that we considered relevant to our study and that we describe below: Nature of the 

gesture, Gesture basis, Human effectors. We manually processed and analyzed the 

proposed ideas according to this taxonomy. The three dimensions are detailed below. 

4.2.2.1. Nature of the gesture 

The nature of the gesture dimension contains 3 values: gestures made With the object, 

On the object or Around the object. The idea behind this dimension is to determine if 

the interaction technique proposed is a tangible interaction (With the object), a tactile 

interaction (On the object) or mid-air interaction relative to the object (Around the 

object). The user had necessarily the object in his hand for the With the object gestures 

but not systematically with On and Around the object gestures. 

4.2.2.2. Gesture basis 

The gesture basis dimension is composed of 5 values: Form, Material, Analogy, 

Function and Other. It explicits the origin of the gesture.  

 A gesture is based on the Form of an object if it uses the physical shape of the 

object. An example would be to roll a ball: the gesture “roll a ball” is based on the 

round shape of the ball.  

 A gesture is based on the Material of the object if it uses the physical 

characteristics of the object’s material. For example, the gesture “fold a sheet of 
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paper” is based on the foldable property of the material. If the sheet of paper was 

rigid, performing the gesture would be impossible.  

 A gesture is performed by Analogy when there is a functional coherence with a 

common gesture performed on another device: the badge and the smartphone 

having approximately the same shape, making tactile gestures on a badge, for 

example, is an analogy to making tactile gestures on a smartphone.  

 The Function criteria represents the reuse of classical gestures made with the 

object for other purposes. An example would be to write with the pen the number 

of the screen to select. 

 Each gesture that can not be classified in one of the previous categories is labeled 

as an Other gesture. 

4.2.2.3. Human effectors 

We hypothesized that gestures requiring the use of one hand would be easier to 

perform especially in a context where the users of the multi-display environment are going 

to be passers-by whose hands are not necessarily free. Therefore, it was necessary to be 

able to classify the interaction techniques according to two additional criterias: Uni-

manual or Bi-manual. For Bi-Manuel interactions, we distinguished between two-handed 

interaction techniques in which the hands are used one after the other (sequentially) and 

where they are used at the same time (parallel). 

4.2.2.4. Summary 

The table below summarizes the three dimensions.  
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Nature of 

the gesture 

With the object 
Physical manipulation performed with the object in 

hand 

On the object 
Gesture performed on the object without 

systematically having it in hand 

Around the object 
Gesture performed around the object without 

systematically having it in hand 

Gesture 

basis 

Form Gesture based on the form of the object 

Material Gesture based on the material of the object 

Analogy 
Gesture based on an analogy to the use of another 

object 

Function Gesture based on the primary function of the object 

Other 
Any gesture that can not be classified in the above 

categories 

Human 

effectors 

Uni-Manual Gesture performed with one hand 

Bi-Manual 
Gesture requiring the use of two hands (sequentially 

or In parallel) 

Table 4.2: Taxonomy 

4.2.3 Results  

During a creativity session that lasted 2 hours 40 minutes, the participants produced 

194 ideas for the 7 tasks with the 8 objects at their disposal. The number of ideas provided 

per category was balanced (Spherical-Semi-spherical: 27.32%, Rectangular: 24.74%, 

Cylindrical: 25.77%, Composite: 22.16%) as well as the number of ideas per object which 

ranged from 10.31% for the Post-it note object to 13.92% for the anti-stress ball. However, 

the ideas proposed per tasks varied from 10.82% for the task of selecting multiple screens 

to 18.04% for the validation task. Below, these results are presented with more details 

according to the following axis: 

- The objects (4x2) described in 4.2.1.1 
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- The tasks (7) described in 4.2.1.5 

- The dimensions of the taxonomy (3) described in 4.2.2 

- The produced gestures 

- Users preference 

4.2.3.1. The nature of the gesture 

 

Figure 4.3: The nature of the proposed gestures (Overall A, Per object B) 

The majority of the proposed interaction techniques are performed With the object 

(80.4%) followed by interaction techniques On the object (17.5%). Interaction techniques 

Around the object have been performed only 2.1% of the time (Figure 4.3.A). Interaction 

techniques On the object were mainly proposed for the badge object (52.0% of the 

gestures) and the plastic bottle (38.5% of the gestures). This distribution remains the 

same regardless of the task for which the ideas had to be generated (Figure 4.3.B). 

4.2.3.2. Gesture basis  

When looking at the results regarding the gesture basis (Figure 4.4), the participants 

were mostly inspired by the form of the object (39.2%) and the materials (28.4%). A large 

part of the interaction techniques proposed for rigid objects is based on form (54.1%). 

This is especially true for gestures made with the objects: Bowl (53.9%), Bottle (70.9%) 
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and Pen (65.2%). Unsurprisingly, the interaction techniques proposed for soft objects use 

its material as a main base for the interaction (56.3%): Cable (84.6%), Post-it notes 

(55.0%) and Paper (52.2%). There are two exceptions to the trend described previously: 

1) The majority of the ideas proposed for the stress ball—soft spherical object—are based 

on its shape (48.2%); 2) the majority of the ideas proposed for the badge—rigid 

rectangular object—are based on analogies (use of a smartphone, a remote control, …). 

 

Figure 4.4: Gesture basis (Type of object, Object) 

4.2.3.3. Human effectors 

The vast majority of the proposed interactions techniques required one hand to be 

performed (Uni-Manual) regardless of the task and the type of material of the object 

(Figure 4.5): Badge (88%), Stress Ball (85%), Bowl (96%), Bottle (92%), Paper (65%), 

Post-it (75%), Pen (96%). However, for the cable object, most of the gestures proposed 

were Bi-Manual (77%).  
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Figure 4.5: Human effectors (Objects) 

4.2.3.4. User preference 

Each group of participants was asked to choose the most adequate interaction 

techniques for the current task from the set of ideas they proposed. At the end of each 

task, the participants voted for their preferred idea (all objects included). We report on 

this in the following table: 
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Task Objet Interaction technique 

Pan Sheet of paper 

The sheet of paper represents the map. 

Holding the sheet of paper horizontally, tilting the sheet 

of paper would direct the Pan. 

Discrete pan     

(8 directions) 
Stress Ball 

Rolling the ball towards the desired control would 

select it. 

Zoom Stress Ball Squeezing the ball would perform a zoom on the map. 

Content transfer 

between displays 
Stress Ball 

Squeezing the Stress ball would lock the content to 

transfer. Pointing towards a second display would select 

it as the destination of the transfer. Releasing the grip 

would transfer the content to the destination display. 

Display selection Sheet of paper 
Rolling the sheet of paper and pointing with it towards 

the display to select it. 

Multiple displays 

selection 
Stress Ball 

Squeezing the Stress Ball and drawing a lasso with it 

around the displays to select it. Releasing the grip 

validates the selection. 

Validation Badge Making a fillip on the badge 

Table 4.3: Preferred interaction techniques and objects for each task  

4.2.3.5. Gestures 

Although the objects were used by several participants during the creativity session, 

we were able to observe recurrent usages for each object (Figure 4.6): 
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Stress ball: 

The gestures proposed for the stress ball were essentially physical manipulations 

(throw the ball: 30%, tilt / rotate the ball: 30%, squeeze the ball: 19%). These gestures 

were preceded or followed by gestures of initiation or validation of the interaction. 

Example: to make a pan on the map, one of the participants proposed to squeeze the ball 

to set the speed of the pan (initiation gesture) and then to tilt the ball to activate the 

pan towards the direction of inclination.  

Bowl:  

The most frequent interaction performed with the bowl was tactile (46%). The place 

of the gesture varied between the bowl’s edge and its bottom (after turning the bowl 

upside down). Example: for the content transfer task, one of the proposed ideas was to 

turn the bowl over. Make a swipe gesture on the bottom of the bowl in the direction of 

the destination display.  

Bottle:  

Inclinations and rotations (54%) were the most often suggested gestures to perform 

the different tasks of the study with this object. Example: to make a pan, one of the ideas 

proposed was to use the bottle as a joystick and performing the pan by tilting it.  

Cable:  

The soft nature of the material composing the cable was extensively used in the 

proposed interaction techniques using this object (50%: join the two edges 38%, roll up 

12%). The cable was also used to perform point gestures (23%). Example: for the display 

selection task, one of the participants proposed to join both ends of the cable to make a 

viewfinder which he used to aim at the display to select.  

Badge:  

Participants favored doing tactile gestures on the badge (44%). Example: in a content 

transfer task, one of the participants proposed to make a swipe gesture on the surface of 

the badge towards the destination display.  

Sheet of paper:  

As was the case with the cable object, The soft nature of the sheet of paper was the 

most exploited characteristic of the object. The most frequent interaction technique 
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proposed using it was: folding the sheet of paper (26%). Example: in order to complete 

the validation task, one of the proposed ideas was to fold the paper in half.  

Pen:  

Pointing: 30%, Tilting / Rotating: 22%, Touch on the pen: 17% were the most 

frequent interaction techniques proposed for this object. Example: To select one of the 

controls to interact with, a participant suggested pointing towards the control with the 

pen.  

Post-it note:  

There was no particular gesture made with the Post-it note that stood out. The trend 

of exploiting the soft material of the object of interaction continued (40%—Fold: 10%, 

Crumple up: 10%, Scroll: 10%, Roll up: 5%, Cut: 5%). Example: to select a display, one 

of the proposed ideas was to remove a sheet of the Post-it notes, crumple it up and shoot 

it towards the display to select. 

4.2.4 Discussion 

4.2.4.1. Limitations 

The study was carried out in a single configuration of fixed displays (3.2.2), we think 

that it would be interesting to evaluate the most promising ideas proposed during the 

creativity study in differents display configurations. Moreover, it would be interesting to 

explore a more extensive list of tasks, such as 3D manipulation or text input. Indeed, 

while the tasks identified for the study were the most common in an MDE, they do not 

cover all the possible tasks.  

4.2.4.2.  Lessons learned from the creativity session 

Even though the interaction techniques proposed during the creativity session still 

need to be implemented and evaluated experimentally to validate them, we think that 

the results of our study represent a trail of natural and intuitive solutions. We suggest 

the following guidelines to design interaction techniques for tangible objects to interact 

with MDEs according to their shape and/or material: 
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 Interaction techniques With the object are preferred for spherical / semi-spherical, 

cylindrical, composite and rectangular categories if the object is made of a 

soft/deformable material. 

 For rigid rectangular objects, whose shape resembles that of a common device 

(smartphone, remote control, music player, etc.), we suggest interaction 

techniques On the object and specifically, by analogy to those that already exist 

for the device resembling the object. 

 When the object is made of soft / deformable material, we suggest focusing on 

techniques based on the material of the object. Conversely, if the object is rigid, 

we advise to favor its shape. 

 Regarding spherical objects, we recommend the design of interaction techniques 

based on their shape, whether the object is deformable or rigid. 

4.2.4.3. Summary  

Most of the gestures (80%) proposed by the participants were tangible gestures (With 

the object). We believe that this is due to the fact that gestures Around the object are 

not yet common in real life, thus, limiting the ideas proposed by the participants to With 

the object and On the object interactions. On the object were proposed mainly for the 

badge object (52% of the interaction for this object). The vast majority of the On the 

object interaction proposed for the badge were made by analogy. We concluded that the 

shape of the badge and its size—that resemble those of a smartphone or a remote 

control—encourages users to make gestures similar to those usually made on devices of 

the same shape and size (smartphones, music players, remote controls ….). 

Participants preferred overall using the material of the object when it was a 

soft/flexible one instead of the shape of the object. The only exception to that is the stress 

ball for which, despite its soft nature, the interaction proposed were mainly inspired by 

its form. We believe that the rounded shape of the ball is more compelling to the users 

than its material in this case. The intrinsic degrees of liberty it offers allow for different 

ways of using it in a tangible interaction. Based on those findings, we decided to explore 

the rounded shape of the object in the work described in the second part of this work 
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which consists in the design, usage and evaluation of a touch-enabled 6DOF interactive 

device for multi-display environments.   

4.3 Interaction with MDEs in a professional 

environment 

As opposed to MDEs in public contexts, which suffer from a lack of adequate 

interaction techniques due to their specific requirements, several interaction techniques 

have been proposed for MDEs in work environments.  

Researchers have mainly proposed adapting existing devices to tackle individual MDE 

tasks, such as the mouse for multi-monitor pointing [20], or smartphones for cross-display 

data-transfer or distant pointing [35, 133]. However such adaptations can result in 

undesirable side effects: mice are not appropriate when the user is standing [133] and 

smartphones held in mid-air can be tiring and cumbersome for long interactions [83]. 

Recent research has demonstrated the use of wearable devices to perform cross-device 

interactions [87, 168]. However, current wearables lack proper input mechanisms and 

mainly serve private purposes. If MDEs are to become the office of the future, as 

envisioned by many [150, 153], can we design a device specifically tuned for such an 

environment? Adopting a unique device would indeed avoid the homing effect when 

switching from one device to another, enhance privacy in such environments through 

personal data control and visualization, lead to a coherent set of interactions with the 

varied MDE applications, and ultimately contribute to a more fluid task flow, a key 

element in MDEs [19]. 

To this end, we designed a novel touch-enabled device, TDome, to facilitate 

interactions and address a range of tasks in MDEs [33, 168]. TDome is the combination 

of a touchscreen, a dome-like Mouse [140] providing 6 DOF, and a camera that can sense 

the environment. TDome thus inherits properties of other existing mouse-like devices but 

includes many novel features to tackle the needs of common MDE tasks [33, 168]: TDome 

identifies the spatial layout of displays; facilitates distant interaction and data transfer 

across displays; and enables personal interactions by using the touchscreen as a private 

output medium. To do this, we designed and implemented different techniques employing 

two versions of TDome (small and large touchscreen) to address these MDE tasks. 
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In this section, we address two major challenges for applying TDome in MDEs: first, 

the device’s usability, which demands the user to coordinate a physical manipulation with 

a touch gesture (we refer to as combined gestures—see Figure 4.7-c); second, the mapping 

between TDome gestures and MDE tasks. To validate TDome’s usability and suitability 

for MDEs, we conducted three user studies. We first carried out a formative study to 

discard gestures deemed too uncomfortable. We followed this with a controlled system 

validation in which we identified the success rate and performance of combined gestures. 

Finally, using the resulting set of gestures, we collected user feedback on the best 

mappings from TDome gestures to common MDE tasks. 

 

Figure 4.7: TDome combines a small (a) or large (b) touchscreen with a dome-like mouse. 
TDome supports performing combined gestures (c), i.e. a 6 DOF physical manipulation followed 

by a touch input. 

4.3.1 TDome overview 

TDome is a touch-enabled multi-DOF input device that embodies features and a form 

factor that facilitate MDE interactive tasks. This unique device results from the 

composition of a touchscreen with a dome-like mouse RPM [140], providing rotation, 

Roll, Translation and Lift-Up motions (6 DOF). The device also includes a camera that 

can sense the environment. As a result, TDome support the control of multiple 

commands, which is required in MDE to control the applications and their content but 

also managing the MDE. We present an illustrative usage scenario with TDome prior to 

presenting its features. 
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4.3.1.1. Usage scenario 

Harry is an engineer working on a smart campus project that monitors data collected 

by multiple sensors on the university. To visualize and interact with the large datasets of 

energy consumption, the university has set up a multi-display environment composed of 

several displays, a large projection wall and two TDome devices. 

As Harry enters the room to start his daily supervision of the energy data, he grabs 

one TDome and uses it to initialize the multi-display environment by simply pointing at 

each active display. He then selects the wall projection by rolling the device toward the 

wall. Harry decides to spread the data visualization across two displays: he selects both 

displays with TDome and transfers the visualizations from one to the other with a TDome 

gesture. As he wants to look closer at information on the second display, he grabs TDome 

and walks towards the display, using the device in mid-air to perform a zoom on the data 

for a closer look. 

Later that day, Mary enters the room and grabs the second TDome. They have a 

meeting to explore the university map to mark points of interest. Harry and Mary take 

their personal smartphones and bind them with each TDome to benefit from personal 

interactions. Each smartphone shows a personal view of the projected map, which allows 

them to add and access personal annotations. Before ending, Harry wants to log onto the 

campus website and upload his annotations: he rolls TDome towards himself to display 

a virtual keyboard on the device’s touchscreen and enter his personal password discreetly 

on the login page, displayed on the tabletop. 

This scenario illustrates how TDome allows users to detect surroundings displays 

arrangement, select one display, move content between displays, reach content at distant 

displays and perform personal interactions on TDome. 

4.3.1.2. Device Manipulation 

Interacting with TDome requires the explicit combination of a physical manipulation 

with a tactile gesture on the touchscreen. The sequential combination of both actions acts 

as a delimiter whose accidental activation is unlikely, as demonstrated in our controlled 

evaluation (4.3.6). This approach reduces the risk of issuing a command after performing 

a physical manipulation inadvertently and improves the robustness of the device. As 
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illustrated in Figure 4.8, four different physical manipulations (Translations, Roll, 

Rotation and Lift-Up) can be combined with four different touch gestures (Tap, Drag, 

Pinch, Spread) for using TDome. 

 

Figure 4.8: TDome allows performing combined gestures, i.e. a physical manipulation 
followed by a touch gesture 

Initially, we favored a one-handed interaction where the dominant hand was used to 

perform the physical manipulation on the device and the touch gestures on the display. 

But our preliminary tests revealed that some gestures were easier to perform in a 

bimanual mode, thus extending the touch vocabulary. 

4.3.1.3. TDome versions: small and large touchscreen 

We implemented two design variations of TDome resulting from different device 

composition alternatives [141]: one with a small touchscreen inserted into the spherical 

shell (Small version) and one with a larger touchscreen laid on top of the spherical shell 

(Large version). As these two versions were meant to be complimentary, we favored the 

possibility of rapidly switching them as opposed to having two separate devices. This 

opens interesting possibilities, such as switching to the large touchscreen when a larger 

display is needed. 

4.3.2 Implementation 

4.3.2.1. TDome core elements 

We used the Roly-Poly mouse (RPM) [140] design guidelines to define the dimension 

of our device: a diameter of 8 cm (~ 3.15 in) was the easiest to handle and manipulate.  
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As with the original RPM, we weighed the device with putty so that the device returns 

to its initial upright position when released (roly-poly toy principle). 

Regarding the touchscreens, we implemented both the Small and Large versions. To 

restrict our device to the selected size, we had to limit the small screen size to less than 

8 cm. To create the Small version, we removed the bracelet from an Android smartwatch 

SimValley AW-41419 (63 g, 45x44x14mm, 28x28mm touchscreen) and enclosed the 

smartwatch into TDome. To implement the Large version, we used a Galaxy S420 

smartphone (5 in, 134 g, 137x70x8mm). We used the smart-watch camera, which is 

situated on the edge of the watch, to provide TDome with a horizontal camera view. The 

camera has a 3 MP sensor and a resolution of 1728x1728 pixels. The position of the 

smartphones camera does not offer the possibility of having a similar view on the 

smartphone version. 

To support device modularity, the interchange of both touchscreens had to be easy 

and quick. We thus 3D printed two plastic adaptors that can be adjusted on a 3D printed 

base: the first one holds the watch while the second one fixes the phone using a magnet 

(Figure 4.9). The two plastic adaptors are very rapidly interchangeable. Altogether, the 

Small version, involving a smartwatch, weighted 207 g in total and the Large version, 

involving a smartphone, weighted 297 g. We used TCP sockets over a local Wi-Fi network 

to connect the watch to the main computer. 

 

Figure 4.9: Arrangement of TDome elements for the Small version (left). Both TDome 
versions are rapidly interchangeable (right). 

                                         

19 http://www.i-montres.net/simvalley-aw-414-go-un-smartphone-android-au-poignet/ 

20 https://www.samsung.com/uk/smartphones/galaxy-s4-i9505/GT-I9505ZKABTU/ 
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4.3.2.2. Physical manipulation detection 

The spherical shell holds an x-IMU of x-io Technologies21 (48 g, 57 mm ×  38 mm ×  

21 mm) to detect the Roll and Rotation of the device in 3D. The IMU is composed of a 

triple-axis gyroscope, accelerometer and magnetometer. The refresh rate of the sensors 

goes up to 512 Hz and we used Bluetooth to connect the IMU with the computer. The 

IMU offered an angular precision of 1°. We 3D printed a holder to fit the IMU in a 

horizontal position inside TDome (Figure 4.9). 

To detect the displacement of the device, we used an infrared bezel (Zaagtech22, 42” ) 

that generated TUIO23 events. We implemented a filtering process to discard touch events 

that were detected when fingers touched the surface around the device. Thresholds were 

also empirically defined to avoid the detection of unwanted Translations, Rolls or 

Rotations: user’s physical manipulations must reach a minimum amplitude to be detected 

(5 cm for Translation, 30° for Roll, 45° for Rotation). Lift-Up was detected as soon as 

TDome was no longer in contact with the table. 

4.3.3 Suitability of TDOME for MDEs 

In this subsection, we discuss how TDome properties suit the interaction requirements 

specified in Section 2. 

4.3.3.1. Spatial sensing  

TDome physical manipulations allow performing 3D pointing in the surrounding 

space. Combined with the on-board camera, it allows sensing the environment. This can 

be used to detect and locate nearby displays, creating a spatial layout of the MDE 

displays represented through a radar-view (physical relationship).  

                                         

21 http://x-io.co.uk/x-imu/ 

22 http://www.zaagtech.com/X-Series-Features.html 

23 An open framework that defines a common protocol and API for tangible multitouch surfaces (see 
https://www.tuio.org/). 
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4.3.3.2. Input interaction 

TDome allows up to 3 types of 2D pointing: by moving the device, by rolling it or by 

interacting with the touchscreen. These ranges of positioning facilitate input redirection. 

This also offers input that best suits a given display, such as a cursor for precise tasks, or 

touch input for coarser input. 

4.3.3.3. Output redirection 

The touchscreen display can be used as a visual buffer to move data among displays 

in MDEs (output redirection). It may also be useful to display a zoomed-in version of a 

selected area on a distant display (reachability). The built-in vibratory capabilities are 

an alternative to discretely provide the user with private information (personal data 

management).  

Through the easy interchange of the Small and Large TDome versions, the user can 

adopt the most appropriate display for each task; e.g., to visualize large graphs, the user 

can choose the Large version, but to display the compact radar-view (i.e. a view of the 

MDE spatial layout), a smaller display is more appropriate (output redirection). 

4.3.3.4. Mid-air interaction 

Two of TDome’s physical manipulations (Roll and Rotate) can be used in mid-air, 

thus facilitating physical displacements to interact with distant displays (reachability). It 

also offers more flexibility to the user to ensure the privacy for some of its tasks (personal 

data management). 

4.3.3.5. Form factor 

TDome’s tilting capabilities facilitate orienting the device towards oneself for private 

input and output interaction (personal data management); and attaching their personal 

smartphone to TDome’s base allows users to access their personal applications and data 

(personal data management). 
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4.3.4 TDome MDE interaction techniques  

We now introduce a set of proof-of-concept prototypes illustrating how the previous 

properties contribute to facilitate interaction in MDEs.  

4.3.4.1. Physical relationship 

To fulfill the physical relationship and arrangement requirement, we implemented a 

semi-automatic acquisition of the displays layout in the MDE. This technique allows 

detecting the displays and building a radar view interface of them, which can be later 

exploited to interact with the displays of the environment. 

During the detection phase, TDome detects a QR code ascribed to each display (better 

recognition algorithms may not necessitate codes for detection as demonstrated by 

HuddleLamp [146]. The user orients TDome toward each display successively, so that the 

device’s on-board camera detects the QR codes (Figure 4.10—left). Once the QR code is 

recognized, the user taps the touchscreen to terminate the identification: the detected 

display is assigned a position in the environment thanks to the incorporated IMU.  

 

Figure 4.10: TDome’s on-board camera detects displays (left) and creates a radar-view of 
the spatial layout (center). Then the user can select a display by Rolling + Tapping towards it 

(right). 

The user progressively creates a radar view describing the relative position of all 

detected displays, with TDome in its center (Figure 4.10—center). The user can manually 

adjust the distance of each display to TDome on the radar view. Once created, the radar 

view can be used with a Roll + Tap on TDome to select a specific display, by rolling 

TDome in the direction of the display and tapping on the touchscreen to validate 

(Figure 4.10—right). 
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4.3.4.2. Input redirection 

One recurrent need in MDEs is to manage input redirection. In addition to changing 

focus from one display to another, TDome offers an input interaction that matches the 

input possibility to the display it is connected to. TDome can be used as a touch input 

device through its embedded touchscreen, as a mouse with its translation capability and 

as a 3D mouse with its rotation and tilting capabilities depending on the input capability 

of the display it is redirected to. 

For instance, to interact with a map on a distant touchscreen, the user can perform 

a Roll + Drag on TDome to pan, and a Lift-Up + Pinch on TDome to zoom. Both 

touchscreen gestures (Drag and Pinch) are the same as what would be used on the distant 

touch display. While using only TDome’s touchscreen gestures would be possible, using 

them in combination with the physical gestures (Roll or Translate) ensures a high 

recognition rate, prevents false positives, as demonstrated by our controlled study 

presented below and offers additional controls: the Roll angle may impact the panning 

speed. 

4.3.4.3. Output redirection 

We developed two interaction techniques to move content from one display to 

another. The Translation + Pinch/Spread technique combines a physical manipulation 

of TDome to select a display and a gesture on the touchscreen to grab or place some 

content on the selected display (Figure 4.11). In our implementation, Translation + Pinch 

grabs the application of the screen selected by the translation’s direction, and displays it 

on the tabletop; while Translation + Spread sends the tabletop application to the screen 

situated in the translation’s direction.  
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Figure 4.11: A Translation + Spread gesture sends the tabletop content (left) to a 
secondary display (right). 

We implemented a second technique using the radar view on TDome to create a 

virtual information tunnel between two displays (Figure 4.12-left). The user creates the 

tunnel by sequentially selecting two displays on the radar view. Once the tunnel is 

defined, the user can move content along the tunnel with a Roll + Tap on TDome: rolling 

is performed in the spatial direction of the second display (i.e. a Roll to the right if the 

display is on the right of the first one); a Tap gesture finalizes the transfer.  

 

Figure 4.12: Using the virtual tunnel technique to transfer information between displays. 

4.3.4.4. Reachability 

To support the reachability requirement, TDome provides support to interact with 

distant displays, i.e. beyond the user’s reach. Given the size, shape and wireless design of 

TDome, the user can physically move to the distant display and perform mid-air 

interactions with TDome (Figure 4.13). 
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Figure 4.13: Illustrating mid-air interaction with TDome  

4.3.4.5. Personal data management 

To preserve confidential information, the user can roll the device towards himself or 

lift the device to visualize and input content privately. For instance, TDome’s large 

touchscreen can be used as a private virtual keyboard to input a password on a 

surrounding display (Figure 4.14). TDome can also be used to visualize a private detailed 

view of a public context.  

 

Figure 4.14: privacy conservation when typing a password 

4.3.4.6. Other techniques 

Beyond effectively supporting essential interactions in MDE, TDome can be used for 

other common tasks such as controlling a pie menu on a distant display, supporting multi-

clipboard copy and paste, and pointing on distant displays. We implemented all these 

interaction techniques using different combinations of physical manipulations and touch 

gestures. 
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4.3.4.7. Resulting challenges for TDome usage 

These techniques illustrate how TDome contributes to the execution of relevant 

interactive situations in MDEs and how it is useful and sufficient to address major MDE 

interactions. Using a single device contributes to a more fluid interaction in MDEs by 

maintaining the user in the flow of his activity [19]. 

Informal tests also provided some early feedback on the importance of precision and 

on the required number of available gestures: a precise control of the device is important 

to perform spatial interactions, such as rolling to select a display; and the user requires a 

wide set of gestures to cover the multiple set of controls and interactions across displays. 

Therefore, conferring the highest usability level to TDome is essential to ensure MDEs 

will take full advantage of the device properties.  

For these reasons, we first focused on exploring the usability of the device itself. To 

this end we performed a user experiment dedicated to identifying the set of most precise 

and robust TDome gestures.  

4.3.5 Exploratory study: TDome gestures and users comfort 

The goal of this exploratory study was to inform the implementation of input gestures 

combining physical manipulations with touch input, by studying only their comfort and 

collecting initial user feedback. Ultimately we wanted to discard gestures that would be 

deemed too uncomfortable. While literature on physiology could be anticipatory, it would 

not help in identifying all the appropriate combinations of wrist gestures and multi-touch 

finger input. For this reason, we did not want to discard any gesture immediately and 

ran this exploratory study to reduce the initial gesture design space.  

4.3.5.1. Protocol 

We carried this exploratory study with 4 participants (all right-handed) from the local 

university. We instructed participants to manipulate the TDome with their dominant 

hand. During the experiment they were confronted with the two different versions of 

TDome (Small and Large). In both settings, they tested three physical manipulations 

(Roll and Translate in 8 different directions, Rotate in two directions, Lift-Up) in 

combination with four touch gestures (Tap, Drag, Pinch, and Spread). Pinch and Spread 

gestures being more complex to perform, participants repeated these gestures twice: once 
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with the dominant hand and once with the non-dominant hand (e.g. in a bi-manual 

setting).  

Participants performed 2 TDome versions × 19 physical manipulations × 6 touch 

gestures = 228 combined gestures per participant. We asked participants to repeat each 

combined gesture 3 times, i.e. each participant performed 684 trials. We asked them to 

rate each gesture combination from 1 (comfortable) to 5 (uncomfortable) to help them 

verbalize their opinion and comment on their ratings. We report on their qualitative 

comments.  

4.3.5.2. Results   

Participants were very positive about performing the following gestures both with the 

Small and Large versions of TDome: 

 Tap and Drag combined with any physical manipulation (Translation, Rotation, Roll 

or Lift-Up). 

 Pinch and Spread in a bi-manual setting (one hand manipulates the rolling device 

while the other touches the display) when combined with a Translation, Rotation or 

Lift-Up.  

However some other gestures seemed too uncomfortable to be performed: 

Performing Pinch and Spread with a single hand was always deemed very 

uncomfortable when combined with any physical gestures and for both TDome versions 

(Small and Large). 

Performing Pinch and Spread in a bi-manual setting in combination with a Roll 

gesture was perceived to be very uncomfortable. 

We decided to remove these uncomfortable gestures (Pinch and Spread with a single 

hand or in combination with Roll) from our subsequent work.  
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4.3.6 Controlled experiment: Feasibility of TDome’s 

combined gestures 

The goal of this controlled experiment was to validate the feasibility of combined 

gestures, i.e. physical manipulation followed by a touch input. We hypothesize that 

certain touch gestures could be difficult to perform on the Small version, on which certain 

combinations could lead to errors. 

4.3.6.1. Combined Gestures  

From the previous exploratory study, we decided to use two touch gestures with one 

hand: Tap and Drag. Gestures using two fingers, i.e. Spread and Pinch, were performed 

with two hands: one hand held the device while the other performed the touch gesture. 

These touch gestures were used in combination with a Translation, a Roll, a Rotation 

and a Lift-Up of TDome.  

4.3.6.2. Task 

Participants were requested to perform each gesture, according to visual indication 

displayed on a tabletop display (Figure 4.15). TDome was placed in an initial position at 

the center of the tabletop display, indicated by a visual feedback. We let users hold the 

device as they pleased. We asked participants to perform the gestures as fast as possible 

with high accuracy. We provided continuous visual feedback indicating the state of the 

device (position, Roll and Rotation) as well as touch gestures on the display. We provided 

them with knowledge of result and in case of error we indicated which gesture (physical 

manipulation and/or touch gesture) had been erroneously performed. Each trial started 

when the user pressed a button on the tabletop, which displayed the instructions, and 

ended when a combined gesture had been recognized.  
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Figure 4.15: experimental context 

4.3.6.3. Participants 

We recruited 12 participants (3 female), aged 27.5 years on average (SD=4.89) from 

the local university. 11 of them were right-handed and 3 of them took part in the 

exploratory study. 

4.3.6.4. Apparatus 

We used the TDome implementation described earlier (Section 4.3.2). The device was 

used on a tabletop display (96 cm × 72 cm) of 102 cm high thus requiring the user to 

stand during the experiment. We used the display in an area limited to the size of the 

infrared bezel (42 inches, 1920×1080px). 

4.3.6.5. Design and protocol 

The experiment followed a 2x4x4 within-subjects design, with Display (Small, Large), 

Physical manipulation (Translate, Roll, Rotate and Lift-Up) and Touch gesture (Tap, 

Drag, Pinch and Spread) as factors. We did not test the condition combining Roll with 

Pinch/Spread, as this combination appeared to be highly uncomfortable in our pre-study. 

We also decided to study one random translation direction to limit the experiment length: 

previous studies on RPM [36] showed that all translation directions were as easy to 
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perform. For the other physical manipulations, participants performed eight Roll 

directions and two Rotations (left/right). 

Our pre-study also showed that Pinch and Spread gestures seemed more difficult than 

Tap and Drag. Therefore, we paired Tap with Pinch, and Drag with Spread to balance 

the different blocks length and difficulty. Trials were grouped in four blocks: one block 

corresponded to one Display and two touch gestures (Tap/Pinch or Drag/Spread).  

The four blocks were counterbalanced across participants using a 4x4 Latin Square. 

For each block, we ordered touch by difficulty: first Tap or Drag, then Pinch or Spread. 

For each set of trials corresponding to one touch gesture, the physical manipulations were 

ordered in a predefined way (Lift-Up, Translation, Roll and Rotation) because a random 

sorting would have made the instructions difficult to follow. Each combined gesture was 

repeated three times. Completing the four blocks took approximately 25 minutes. 

The study started with a training set made of the same four blocks as in the 

experiment. The training consisted of 94 trials and took approximately 20 minutes. After 

the training, each participant performed 192 trials: 144 trials for the Tap and Drag: 2 

Displays x 12 Physical Manipulations (1 Translation + 8 Rolls + 2 Rotations + 1 Lift-

Up) × 2 Touch gestures × 3 repetitions.    

48 trials for the Pinch and Spread: 2 Displays x 4 Physical Manipulations (1 

Translation + 2 Rotations + 1 Lift-Up) × 2 Touch gestures × 3 repetitions.    

We collected 192 × 12 participants = 2304 trials in total, which took approximately 

45 minutes for each participant. 

4.3.6.6. Collected Data  

We logged all gestures from start to finish. We calculated success rates, completion 

time from instruction onset to validation, unintended touch gestures on the Display and 

amplitude of the physical manipulations. We classified errors in three categories according 

to the gesture that had been erroneously performed: physical, touch or both. Finally, we 

asked participants to rate each condition on a 1–5 Likert scale on perceived difficulty. 
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4.3.6.7. Results 

A Shapiro-Wilk test established that the data was not normal and we could not 

normalize it. Therefore we used a Friedman test (we report χ2 and p) to compare more 

than 2 conditions, and Wilcoxon tests otherwise (we report p value). Where appropriate, 

we used a Bonferroni correction. 

We first discuss the success rate for the Small and Large versions separately as a 

Wilcoxon test showed a significant effect of Display on the success rate (p <.001).  

Success rate: Large version 

When using the Large version, we found no significant effect of Touch gestures 

(Friedman: χ2=3.87, p=0.2) or Physical manipulations (Friedman: χ2=4.1, p=0.2) on the 

success rate. Overall, success rate with the Large version was 94.44%. Errors were 

distributed among Physical Manipulations (2.52%) and Touch gestures (2.86%).  

A Friedman test reveals a significant effect of Touch gesture on the success rate when 

performing a Rotation (χ2=13.32, p=.003): a Wilcoxon test reveals a significant difference 

between Tap and Drag (81.94% vs. 98.61%; p=.022) and between Tap and Pinch (81.94% 

vs. 97.22%; p=.045). 

 

Figure 4.16: Mean success rate for each combination of Physical manipulation and Touch 
gesture when using the Large version. 

We observed that when instructing participants to perform a Rotation + Tap 

combined gesture, 91% of the erroneously detected touch gestures are Drag gestures. 

Performing a Rotation induces a wrist distortion that may affect the user’s ability to 
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precisely tap the display without swiping the finger: this may explain why a Drag is easier 

to perform than a Tap. Spread and Pinch are not affected by the wrist rotation since 

they are performed in a bi-manual setting (Figure 4.16). 

Success rate: Small version 

When using the Small version, a Friedman test revealed a significant effect of Physical 

Manipulation (χ2=17.46, p <.001) and Touch gestures (χ2=33.56, p <.001) on the success 

rate. We analyze the success rates for each combined gesture, i.e. the combined Physical 

manipulation and Touch gesture.  

 

Figure 4.17: Mean success rate for each combination of Physical manipulation and Touch 
gesture when using the Small version. 

A Friedman test reveals a significant effect of Touch gestures on the success rate when 

performing a Lift-Up (χ2=16, p=.001), a Translation (χ2=15.75, p=.001), a Roll (χ2=6.4, 

p=.010) or a Rotation (χ2=21.6, p <.001): 

Lift-Up: a Wilcoxon test reveals a significant difference between Tap and Spread 

(92.22% vs. 41.67%; p=.001) and Tap and Pinch (92.22% vs. 58.33; p=.040). The success 

rate with Drag is 80.56%. 

Translation: a Wilcoxon test reveals a significant difference between Tap and Spread 

(91.67% vs. 36.11%; p=.001) and between Pinch and Spread (77.78% vs. 36.11%; 

p=.020). The success rate with Drag is 66.67%. 

Roll: a Wilcoxon test reveals a significant difference between Tap and Drag (95.83% 

vs. 86.11%; p=.040).  
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Rotation: a Wilcoxon test reveals a significant difference between Tap (86.11%) / 

Drag (80.56%) and Spread (40.28%) / Pinch (50.0%; p <.020).  

Completion time 

A Wilcoxon test did not show any difference between the Small and the Large versions 

(p=.08). Overall, it took participants 2.5 seconds to perform a combined gesture. While 

we found some differences across gesture combinations, all of them are compatible with 

the micro-interactions concept [5], i.e. fast interactions that take less than 4s completion: 

all times ranged between 2.1s and 2.7s. 

Unintentional touches  

We recorded unintended touches on the Small and Large versions. Overall, results 

were similar for both versions: we detected unintentional touches in 2% of the trials. 

These touches did not necessarily raise errors. The sequential use of a touch interaction 

after a physical gesture prevents from launching a command unintentionally.  

Subjective feedback 

When considering the physical manipulations, results show that with the Small 

version, more than 50% of the participants found easy or very easy (4 or 5 on Likert 

scale) to perform a combined gesture involving a Roll, Translation or Lift-Up. In the case 

of the Large version, more than 75% of participants rated these gestures as easy or very 

easy. 

When considering the touch gestures, we observed that with the Small version more 

than 50% of participants found difficult or very difficult (1 or 2 on Likert scale) to perform 

a combined gesture involving a Spread or Pinch. With the Large version, 60% or more of 

the participants found easy or very easy to perform combined gestures involving any kind 

of touch gesture. 

Summary 

Results reveal differences between the Small and Large versions (Figure 4.18). With 

the Small version, the experiment reveals that 17 combined gestures can be comfortably 

and efficiently performed: those based on the combination of a Roll (8 directions), a 
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translation (8 directions) or a Lift-Up with a Tap gesture (with a success rate of 95.83%, 

91.67% and 92.22% respectively).  

With the Large version, the experiment reveals that 54 combined gestures can be 

comfortably and efficiently performed: 16 results from the combination of a Roll (95.49% 

success rate) with Tap or Drag gesture, 36 results from the combination of a Translation 

(91.67% success rate), or Lift-Up (95.83% success rate) with one of the four touch gestures 

(Tap, Drag, Pinch, Spread) and 2 results from the combination of a Rotation with a Drag 

(98.61% success rate).  

 

Figure 4.18: Summary of the 17 (Small) + 54 (Large) combined gestures which offer a good 
usability and performance. 

The findings of this controlled experiment established the usability of TDome. Now, 

how should these possible inputs be mapped to MDEs’ most common tasks?  

4.3.7 Mapping tdome gestures to mde tasks  

We elicited user input through a user study to explore how the selected set of gestures 

from our previous experiment can be mapped to MDE interactive tasks. 

4.3.7.1. Overview and rationale 

We asked users to choose, for each TDome task, one gesture from the set of gestures 

selected in the controlled experiment.  
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4.3.7.2. MDE tasks considered 

From our scenarios, we considered the 7 tasks, each task represents one of the 

requirements described in section 2: pointing on a distant display (reachability); zooming 

on a distant display (navigation); displacing a window from one display to another 

(horizontal tunnel, vertical tunnel) (Output redirection); sending a window from 

Tabletop/TDome (user position) to a distant display and vice-versa (output redirection); 

selecting an icon on the radar view (interaction with UI controls); panning and zooming 

a focused view of a distant context (navigation); and typing on a private keyboard 

(personal data management). 

4.3.7.3. Participants 

12 (1 female) students and researchers from the local university volunteered for this 

study. They were aged 31.9 years on average (SD=9). Five of them took part in the 

previous studies.  

4.3.7.4. Procedure 

Participants were given the two TDome versions (Small and Large) and were situated 

in an MDE environment comprised of a tabletop, 4 displays and 1 video-projection. We 

familiarized our participants with TDome capabilities by showing them a video 

illustrating the combined gestures (without showing any interactive task). For each 

combined gesture, we asked participants to perform it themselves with both versions of 

TDome. Then, we asked participants to select and justify, for each task and each TDome 

version, which gesture they preferred. The session took about 15 minutes. 

4.3.7.5. Collected data 

Every user generated one sheet with a summary of the gestures chosen for each task 

and TDome version. We recorded users’  verbal comments. 

4.3.7.6. Results  

Amongst all available combined gestures, only one was never used in our study (Lift-

Up + Drag). Overall, participants took advantage of the gestures diversity to match the 

different tasks. The agreement scores [195,197] of the combined gestures (Physical 
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manipulation + touch gestures) range between 0.3 and 0.6. These scores are in line with 

previous studies [197]. To find more consensus between participants and to complete the 

agreement score analysis, we will detail the choice of physical manipulations and touch 

input separately. 

Physical manipulations 

Our results were similar for the Small and Large versions concerning which physical 

gesture to use. Thus we report both results together (i.e. 24 gestures per task).  

Two physical gestures were used more often: Translate and Roll (Figure 4.19). For 

some tasks, one was preferred over the other: Translation for panning (17/24), or for 

moving a focus (15/24); Roll for private pincode input (19/24). For other tasks, such as 

redirecting data using the tunnel, output redirection or display selection, there was no 

clear preference for one of these two gestures.  

The Lift-Up gesture was used for zooming 13 times (i.e. lifting up the device activates 

zoom mode). Rotation was used only once for each of our zooming tasks. 

 

Figure 4.19: Percentage of users that chose each physical gesture on both versions of 
TDome for MDE tasks. 

Touch gestures 

While only the Tap gesture is feasible on the Small version, users selected different 

gestures on the Large version according to the task (Figure 4.20). For instance, Pinch 

and Spread were preferred for zooming (10/12), and Drag was preferred for sending 
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content from the tabletop to other displays (8/12) s. Taping was the preferred gesture 

for map panning (12/12), display selection (12/12) or pincode input (11/12). 

 

Figure 4.20: Percentage of users that chose each touch gesture on the Large version for 
MDE tasks 

4.3.8 Discussion and perspectives  

4.3.8.1. TDome benefits 

We presented two versions of TDome: a Small version with an integrated touchscreen 

and a Large version based on attaching a smartphone. TDome’s unique features offer 

several advantages to interact with MDEs: 

TDome supports performing multiple combined gestures involving a physical 

manipulation of the device (Translation, Roll, Rotation or Lift-Up) followed by a touch 

gesture on the touchscreen (Tap, Drag, Pinch or Spread). Such a combination prevents 

from unintended activations due to parasite touches on the touchscreen; 

The combined gestures from our final set represent good candidates to support rapid 

access to interactive commands; 

The two TDome versions are easily interchangeable and offer complementary 

functionalities: the Small version is useful to rapidly launch shortcuts, while the Large 

version offers a larger display area and supports multi-touch gestures (Pinch and Spread); 
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Rolling TDome can be used to interact with multi-dimensional data through 

continuous physical gestures, as demonstrated earlier [140]; 

The embedded display can be used as a personal display area to augment output 

visualization, such as in overview + detail techniques; 

The embedded display can also be used to show feedback of the TDome interactions, 

such as displaying a copied object for the copy/paste technique. 

4.3.8.2. Lessons learned for mapping TDome gestures to MDE tasks 

We propose a set of guidelines to map TDome gestures to MDE tasks based on our 

mapping study as well as on our experience developing TDome interaction techniques: 

 TDome offers a diversity and large number of possible gestures of which users can 

take advantage as illustrated in our mapping study. Some of these gestures have 

natural mappings with MDE tasks, such as Rolling towards oneself to display private 

information, Pinch and Spread for zooming or dragging for sending data to another 

display. Appropriately combined with a physical manipulation or a touch gesture, 

these should become the “default” combined gestures with TDome on MDEs. 

 While some mappings are obvious and have a large consensus, others are sometimes 

split between two types of gestures (usually Roll or Translation): this suggests that 

using TDome in an MDE could benefit from a device personalization step wherein 

the user defines his preferred mapping, especially for output redirection. 

 Interacting in an MDE involves system tasks (i.e. tasks related to the environment, 

such as display selection) and application tasks. Since these tasks could be assigned 

to the same TDome gestures, there is a need for a mode switching gesture. The Lift-

Up manipulation combined with touch input, is a good candidate as it was considered 

for switching between pan and zoom tasks in our mapping study. 

4.3.8.3. Memorability of a large number of gestures 

TDome offers a large set of usable combined gestures. This diversity of available 

controls is particularly relevant to tackle tasks in MDEs. However, increasing the number 

of controls might make them hard to memorize. The physical nature of these combined 
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gestures can help cluster them according to the physical manipulation, as shown in our 

mapping study. Further experiments are required to identify how such clustering can 

improve gestures or command memorization.  

4.3.8.4. Collaboration 

MDEs are naturally designed to support collaboration. We can envision multiple 

TDome like devices, each controlled by the MDE’s users. However, in such cases input 

and output redirection mechanisms would need to be effectively controlled. Control 

mechanisms have been proposed by others [44] to handle synchronization, locking and 

input conflicts, and future iterations of TDome will adapt or build on such proposals.  

4.3.8.5. Discussion 

In this work, we focused on the suitability of TDome capabilities for MDE tasks and 

the feasibility of its combined gestures. TDome interaction techniques still need to be 

fine-tuned and future work should compare their performance with a baseline for each 

MDE task. Theoretically, since TDome integrates the same capabilities as existing MDE 

devices, we hypothesize that it can perform similarly for each individual MDE task. For 

instance, TDome can perform translations like a mouse, and has the same touch and mid-

air capabilities as a smartphone. Moreover, since TDome is a unique device that supports 

a range of core MDE tasks, it should improve the overall performance by reducing homing 

transition times and promoting the interaction flow. Therefore, beyond individual 

controlled comparisons, it would be interesting to carry a longitudinal study. We leave 

these studies for future work.  

Beyond these aspects, we plan to focus on user expertise of TDome techniques: most 

menus or command techniques consider novice and expert modes as well as the transition 

from novice to expert [52]. In our work we focused on how the combined gestures are 

performed. It will be interesting to design techniques that efficiently support both novice 

and expert users and the transition from one group to the other, as done with the Marking 

Menus [201].  

We also plan to investigate the extension of our physical manipulation gestures by 

adding thresholds. For instance, each Roll gesture could launch two different commands 

according to the Roll amplitude (under or over 42° according to our study results). 
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Technical alternatives also need to be investigated to replace the infrared bezel used to 

detect the TDome translations. We are currently exploring the application of conductive 

paint on the external surface of TDome, which will allow using the device on any 

capacitive surface. 

Finally, TDome has been proposed for MDEs in a professional setup as using it in a 

public environment or an unsafe one where it might be damaged or stolen is its current 

limit. Exporting a similar device to public spaces remains a possibility for future work. 

4.4 Conclusion 

This chapter describes the work carried to improve interaction with multi-display 

environments in two contexts: public and professional environments. 

In the first part of this chapter, we studied the use of everyday objects to interact 

with public MDEs. To this end, we carried out a study, through a creativity session, 

whose purpose was to identify the possible usages of objects of different shapes and 

materials to achieve a set of tasks representative of the most common tasks in MDEs. 

We defined a taxonomy to classify the ideas collected from the study. Our results showed 

that users prefer to rely on the materials of the objects at their disposal to perform their 

gestures when they are soft (flexible). Conversely, users rely on the shapes of objects when 

they are rigid. However, we noted some exceptions: gestures based on analogies were 

preferred for the badge and gestures based on the shape were preferred for the stress ball, 

despite its soft material. Indeed, the round shape of the stress ball was its most influencing 

criteria. Based on those findings, we decided to further explore the rounded shape of 

tangible objects to interact with professional MDEs. We focused on a rigid material as it 

is most probable in a work context. We also reconsidered the interaction metaphor as it 

is not suitable for work MDE. 

In the second part osf this chapter, we presented TDome, a dome-shaped device 

designed for interactions in MDEs. We designed two TDome prototypes: a Small version 

with an integrated touchscreen and a Large version based on attaching a smartphone. 

We discussed how TDome properties suit the interaction requirements of MDEs and 

introduced a set of proof-of-concept prototypes illustrating how its properties contribute 
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to facilitate interaction in those environments. We explored combined gestures involving 

a physical manipulation (Translation, Roll, Rotation or Lift-Up) followed by a touch 

gesture (Tap, Drag, Pinch or Spread) through a 3-step process. First, an exploratory 

study focusing on comfort established that 60 combined gestures could be comfortably 

performed. Second, a controlled experiment evaluated the user’s performance as well as 

the subjective perceived difficulty. Results revealed that the number of gestures that can 

be precisely and easily performed is 17 with the Small version, and 54 with the Large 

version. Finally, a user survey explored the mappings between these gestures and MDE 

tasks. Results show that some combined gestures are more prone to be used in specific 

tasks than others. In general, we find participants are able to match TDome features to 

MDE tasks. 
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5 Interaction with Immersive 

Environments 

5.1 Introduction 

Immersive systems such as the Hololens24, MetaVision25 ou Moverio26 allow the user 

to display numerical data and visualizations directly on the physical word by attaching 

them to a fixed physical anchor; we hereafter refer to these as immersive visualizations 

These technologies offer new interaction opportunities that are to this day insufficiently 

explored. As such, we do not have implicit design rules to guide the developer when 

designing solutions for these environments. This results in a compilation of partially 

satisfactory solutions for interaction. 

Indeed, while the numerous advantages of immersive systems make them a compelling 

alternative to visualizing multidimensional data on 2D displays, existing interaction 

techniques for exploring and manipulating this type of data is unsuitable for immersive 

systems. These existing solutions do not have enough degrees of freedom [59, 126, 156] 

and are often ambiguous and tiring (especially mid-air gestures [24, 126, 138]). Moreover, 

some of them constrain the mobility of the user to a defined place where the device (3D 

mouse or other) can be used [110], usually a desktop. 

The challenge is to maintain the freedom of movement of mid-air interactions, the 

degrees of freedom of tangible interactions and the accuracy of the mouse to provide a 

flexible and precise solution for interaction with immersive visualizations. 

In this work, we propose to study on-body tangible interactions, i.e. using the body 

as a physical support for interaction with an input device. We thus present a new 

approach that combines 1) the use of a multi-DOF mouse-like wireless device, combining 

                                         

24 https://www.microsoft.com/en-us/hololens 

25 http://www.metavision.com/ 

26 https://epson.com/moverio-augmented-reality 
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the precision of a mouse, tangibles’ multiple degrees of freedom, and 2) the use of the 

body to guide the physical manipulations of the device and exploit users’ proprioception27 

(i.e. sensing its own body parts) while limiting muscle fatigue inherent to mid-air 

interactions. 

To explore this new interaction approach, we define a new design space that 

encompasses the physical properties of the body (support) and the interactions that can 

be performed on the body. To evaluate the feasibility of such an approach, we conducted 

an experiment investigating the amplitude and comfort of on-body tangible gestures. 

Our contribution is both conceptual and experimental. First, we detail our design 

space for tangible interactions on the body. Then we evaluate them through an 

experiment. Finally, we discuss the advantages and disadvantages of these tangible 

interactions before illustrating them through two concrete scenarios. 

5.2 On-Body tangible interactions 

In this section, we present a new interaction approach for immersive visualizations 

based on the use of the body as a support for tangible interactions. We detail the main 

requirements to interact with immersive visualizations, our choices of body parts and 

tangible objects to use, before presenting the design space. 

5.2.1 Interaction requirements for immersive visualizations 

There are different types of immersive visualizations. They range from a simple 

interactive visualization of a 3D object to complex multidimensional data. These 

immersive visualizations all share a set of basic requirements:  

Unconstrained mobility (R1): the main advantage of immersive systems for data 

visualization is that they offer physical exploration capabilities. It has been demonstrated 

that the physical exploration of data, as opposed to the virtual one, allows for a better 

spatial understanding of the visualization. The user can have an overview of the 

visualization from afar, or a more detailed view by getting closer. He can also analyze the 

                                         

27 The sense of the relative position of one's own parts of the body and strength of effort being employed 
in movement (see https://en.wikipedia.org/wiki/Proprioception). 
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data from different angles [94]. It is thus important that the interaction techniques do 

not constrain the mobility of the user. 

Multiple degrees of freedom (R2): the multidimensional nature of the data visualized 

in this type of systems requires enough degrees of freedom to tackle the tasks related to 

their manipulation [17]. 

Limited visual clutter (R3): the interaction techniques should not occult the data 

visualization. They should also allow the user to interact with data without having to 

divert his attention from the visualization [94]. 

- Precision (R4): the interaction techniques should offer enough precision to tackle the 

type of tasks performed in immersive systems, such as filtering. 

The on-body tangible interaction approach can satisfy the requirements mentioned 

above. Indeed, the body is an always available physical support that favours physical 

exploration of data. It does not constrain the movement of the user (R1). Thanks to the 

body’s natural capacity to sense its own body parts (proprioception), the user can perform 

tangible interactions on the body without having to switch his attention from the data 

visualization to the interaction tool (R3). 

5.2.2 Tangible device 

Regarding the tangible device, we decided to explore the use of the Roly-Poly Mouse 

(RPM) [140], an input device with a semi-spherical shape that offers up to six degrees of 

freedom. This device is particularly suitable for manipulating multidimensional data (R2, 

R4) [140]. Moreover, the device can be manipulated mid-air and therefore does not 

constrain the user’s movement (R1). 

RPM allows 3 types of physical manipulations (Figure 5.1): translations, rotations 

and rolls. These manipulations can be performed in several directions [140]: 2 directions 

for the rotations (Left, Right), and at least 8 distinct directions for the rolls and the 

translations (North, North-East, East, South-East, South, South-West, West and North 

West). 
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Figure 5.1: RPM’s degrees of freedom 

5.2.3 Physical support 

Many research works have focused on interaction on or with the body [77, 105,183 

184]. The arm and hands were the preferred body part in most works. These body parts 

offer numerous advantages: they are easily accessible for interaction, they are in the user’s 

field of vision and generate less social discomfort than other body parts [105, 181]. In their 

work on interacting with interactive clothing [105], Karrer et al. did an experiment in 

which they tried to identify the most appropriate region of the body to perform 

interaction with clothes. Among the observations they made, the non-dominant arm as 

well as the hip are the preferred body-parts for interaction. Other parts of the body, such 

as the stomach and legs, have been rejected for social or personal reasons (Figure 5.2). 

 

Figure 5.2: Body parts 
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We decided to focus on the forearm of the non-dominant arm as a support for the 

interaction for several reasons: it offers a large surface on which the tangible interaction 

can be performed, and it is effortlessly accessible by the dominant hand as opposed to 

the arm which needs a consequent effort to be touched by the dominant hand. Moreover, 

several poses can be adopted with the forearm (Figure 5.3) increasing the possible 

interaction vocabulary. 

5.2.4 Referential 

As interaction with data is performed in a spatial context in immersive systems, it is 

important to choose the right frame of reference for the interaction. The frame of reference 

can be allocentric (external: it can be world-centered, data centered…) or egocentric 

(relative to the body). In an egocentric frame of reference, the output of a given 

manipulation is determined by how it is performed with regards to the body. A translation 

parallel to the body for example will have the same effect regardless of the body’s position 

and orientation in the world. In our approach, we adopt an egocentric frame of reference 

to allow the user to interact from anywhere with geographically-anchored data in the 

physical world [124]. 

5.2.5 Design space for tangible interaction supported by the 

forearm 

As a result of the previously identified characteristics, we propose a design space that 

describes the properties of the physical interaction support. It is composed of 3 

dimensions: the Pose, the Place of motion and the Range of motion. 

5.2.5.1. Pose (POS) 

We identified three main poses for the forearm: Vertical, Parallel (to the body) and 

Forward (Figure 5.3). The three poses embody the 3 axes of a three-dimensional cartesian 

coordinate system.  

In the Vertical pose, the forearm is vertical, the hand points upwards. In the Forward 

pose, the forearm is perpendicular to the shoulders. In the Parallel pose, the forearm is 

parallel to the shoulders. 
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Figure 5.3: Poses 

5.2.5.2. Place of motion (POM) 

The Place of motion represents the surface of the forearm on which the interaction 

will be performed. We identified two types of places: the first one extends over the length 

of the forearm, from the elbow to the wrist (length POM); the second one extends over 

its width (width POM). There are three types of width POM: close to the Elbow (Elbow 

POM), in the middle of the forearm (Middle POM) or close to the wrist (Wrist POM). 

This results into 12 different interaction supports (Figure 5.4) which increases the 

possibilities of interactions exploiting the proprioception of the user and avoiding the 

fatigue of a mid-air usage. 

 

Figure 5.4: Place of motion 

5.2.5.3. Range of motion 

The Range of motion represents the exploitable surface for each pair of Pose and 

Place of motion (Figure 5.5). It describes the maximum range of translation that can be 
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performed with RPM. The greater the range of motion, the greater the range of values 

that can be manipulated on the concerned place. 

 

Figure 5.5: Range of motion 

We explore these three dimensions in a controlled experiment, detailed in the next 

section. 

5.3 Experiment: Tangible Interactions On The 

Forearm 

The aim of the experiment described in this section is to study the characteristics of 

the implementation of an on-body tangible interaction solution, using RPM as a tangible 

object for interaction, and the non-dominant forearm as the support. 

5.3.1 Goals 

The main objective of the experiment is to study the movement of the device on the 

forearm and specifically, its translations. Indeed, we hypothesized that performing 

translations on the forearm could lead to systematic rolls. We decided in this first study 

to limit our evaluation to the translations. The experiment includes measuring the 

possible range of motion as well as identifying the areas of the forearm (width) on which 

translations can be performed distinctly. The second objective is to study the stability of 

the forearm as a support for the interaction in addition to the stability of the device 

(RPM) during its use. It has been observed before [140, 158] that the device suffers from 

involuntary rolls (up to 12°) when used on a flat surface. This aspect of the device can 

potentially have an impact on its usability. 
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5.3.2 Task 

During the study, we asked participants to perform translations on different places of 

motion: the length of the forearm (length POM) and the width of the forearm (Elbow 

POM, Middle POM, Wrist POM). A trial is defined as a back-and-forth translation on 

the forearm (Figure 5.6). The starting points of the translations were chosen by the 

participants at the beginning of each group of 10 trials: the possible starting points of the 

length POM are the elbow or wrist. The possible starting points for all the width POM 

are the inside or the outside of the forearm. It was not necessary to control the starting 

points for gestures as the participants did the same gesture 10 consecutive times in each 

group. The device had to be manipulated with the dominant hand while the forearm of 

the non-dominant hand acted as physical support. The participants had to perform 

translations on each of the four Places of motion (Length POM, Elbow POM, Middle 

POM, Wrist POM), and for each Pose (Vertical, Parallel, Forward). The poses and places 

of motion were explained and illustrated to the participants at the beginning of the 

experiment. Participants were free to grasp the device as they wished. Since the purpose 

of the experiment was to study the use of the device on the forearm, no feedback was 

provided to the participants. 

 

 

Figure 5.6: Length and Width trial 

5.3.3 Apparatus 

The diameter of the RPM version used for the experiment was 8 cm. In order to 

detect involuntary rotations and rolls of the device, an IMU of X-io Technologies was 

used (x-IMU: 48 g, 57 mm ×  38 mm ×  21 mm). The IMU is composed of a triple-axis 

gyroscope, accelerometer and magnetometer, offering an angular precision of 1°. The 
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refresh rate of the sensors goes up to 512 Hz and we used Bluetooth to connect the IMU 

with the computer.  

To locate the position of the device and the body parts, an OptiTrack system 

composed of 12 cameras was used. The cameras track infrared reflective markers to detect 

objects with a precision of 1 mm. The markers were carefully placed on the device so that 

they do not influence the participant’s grasp (Figure 5.7). 

In order to detect the position of the forearm and identify the different poses described 

previously, additional infrared reflective markers were placed on the main joints of the 

arm / forearm (Figure 5.7). The wrist and the elbow of the non-dominant arm were 

tracked as well as the shoulders of the user. 

 

Figure 5.7: Placement of the infrared tracking markers 

5.3.4 Procedure 

The experiment follows a 3x4 within-subject design with the Pose (Forward, Parallel, 

Vertical) and the Place of motion (length POM, Elbow POM, Middle POM, Wrist POM) 

as factors. The Pose factor was counterbalanced using a 3x3 Latin square. The study is 

composed of 3 blocks, each block consists of 4 places of motion in a random order. For 

each pair of Pose and Place of motion, participants had to do 3 groups of 10 trials. The 
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participants could take a break between each group of 10 trials. The study lasted 

approximately 40 minutes. We collected 360 trials per participant, 4320 trials in total. 

5.3.5 Participants 

We recruited 12 participants (5 females), 10 from the local university, aged 26 years 

on average (SD=5,4). 4 of the participants were PHD students, 5 were MSc students, 1 

was a research engineer and 2 were external to the university. All the participants were 

right-handed.  

5.3.6 Collected Data 

We measured the circumference of the forearm near the elbow and the wrist for each 

participant as well as the inner and outer length of the forearm (Figure 5.8). We collected 

the position of the device, the wrist, the elbow, the shoulders using the infrared reflective 

markers and the optitrack system. We also collected the rotations and rolls of the RPM 

device using the IMU. To evaluate the physical fatigue associated with the use of the 

RPM device on the forearm, we asked participants to fill out a Borg scale [32] for each 

(Pose, Place of motion) couple. 

 

Figure 5.8: Forearm measurement 

5.4 Results 

In this section, we report on the results of the study. First, we focus on the physical 

support (forearm): we present the results concerning its stability as well as the exploited 

surfaces for each Place of motion, in each Pose. Then, we detail the results related to the 
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usability of the device. Finally, we present the results on users fatigue. All error bars in 

the following results represent 95% confidence intervals. 

5.4.1 Forearm stability: elbow and wrist movements 

Ideally, for the forearm to be a support for interaction, it is important that it remains 

stable. We therefore logged the movements of the forearm during interactions: we 

measured the positions of the elbow and the wrist every 10 milliseconds. The movements 

of each of the two joints were computed with regards to their starting position, collected 

at the beginning of each group of 10 trials. We report the average movement of the elbow 

and the wrist during these 10 trials using the axes described in Figure 5.9. 

 

Figure 5.9: Mouvement – Axes 

The elbow was relatively stable (Figure 5.10): the maximum movement (all directions 

included) did not exceed 1,7 cm on average. The biggest movement of the elbow was 

lateral (on the X axis) and it ranged from -0,86 cm to 0,84 cm for a total of 1,7 cm. The 

smallest movement was vertical, ranging from -0,65 cm to 0,5 cm for a total of 1,15 cm. 

The results observed for the wrist are similar to the elbow, i.e. generally stable, with 

a maximum movement of 1.57 cm on average. The biggest movement of the wrist was 

sagittal (on the Z axis) and it ranged from -1 cm to 0,57 cm for a total of 1,57 cm. The 

smallest movement was lateral, ranging from -0,59 cm to 0,42 cm for a total of 1,01 cm. 
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Figure 5.10: Elbow and Wrist movements 

These results remain valid when we consider each Pose independently. Taking into 

consideration these findings, we can say that the forearm is sufficiently stable to be used 

as a support for tangible interactions in immersive systems. 

5.4.2 Range of motion 

 

Figure 5.11: An example of distance covered for a group of gestures 

The Range of Motion was measured by calculating the average distance covered by 

RPM for each group of 10 successive trials (Figure 5.11). It was computed for each pair 

of Pose and Place of motion. As the size of the forearm differs from one participant to 

another, we standardized the collected data.  
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Figure 5.12: Mean distance covered by the RPM for each condition 

5.4.3 Range of motion along the forearm 

Participants exploited at least 93,6% of the forearm when performing translation on 

the Length POM. Overall, the translation distance ranged from 93,6% to 101,7% of the 

forearm (green bar Figure 5.12). However there were no significant differences between 

the poses. We observed that the translations performed in the Parallel pose extended to 

the hand, thus surpassing the wrist (explaining the values going above the 100%—wrist—

mark on Figure 5.12).  

5.4.4 Range of motion around the forearm 

We also calculated the range of motion for translations performed around the forearm 

(width POM). We observed that for each width POM, the exploited surface of the 

forearm equaled 15,6% of the total length of the forearm on average. This value ranged 

from 13,8% for the wrist POM in the Forward pose to 21% for the elbow POM in the 

same pose. The largest exploited surface in the width POM is smaller than a third of the 

forearm. Theoretically, it is possible to consider using the three width POM. It should be 

noted, however, that these three regions of the forearm should be distinct, in other words, 
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they should not overlap each other. Therefore we study the dispersion of these exploited 

surfaces in the next section. 

5.4.5 Dispersion of the translations performed on the width 

POM on the forearm 

This measure describes the distribution of the points of contact of RPM on the 

forearm (between the elbow and the wrist) for the complete experiment (i.e. 360 trials). 

 

Figure 5.13: Dispersion of the translations performed on the width POM (0: Elbow position, 
100: Wrist position) 

The results show that there’s a fairly large dispersion of the exploited surfaces 

(Figure 5.13). The surfaces exploited in the elbow POM and Middle POM overlap on the 

forearm subpart ranging from 30% to 60% (Figure 5.13); similarly, the surfaces exploited 

in the Middle POM and Wrist POM overlap on the forearm subpart ranging from 70% 

to 90%. However, it appears clearly that the translations performed on the elbow POM 

and Wrist POM were always done in distinct regions of the forearm throughout the 

experiment. 

Finally, despite the clear instruction that required participants to perform translation 

from the elbow to the wrist, we can observe that a fair number of translations were 

performed beyond the wrist position (i.e. on the hand, above the 100% mark). 
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5.4.6 Width POM: Device Rolls 

As the RPM device offers multiple degrees of freedom, namely: Translations, 

Rotations and Rolls, it was important to study the separability of these physical 

manipulations when used on the forearm. In the following, we will report on the 

involuntary Rolls of the device for each POM in each Pose when performing translations 

of RPM. The results are presented as averages accompanied by 95% confidence intervals. 

 

Figure 5.14: Device rolls when performing translation on the width POM (degrees) 

Figure 5.14 shows that the translations performed in each one of the Width POM 

(performed around the forearm on its width) and in each Pose are systematically 

accompanied by a pronounced roll. The device is not maintained horizontally during 

translations.  

The results show that the rolls were more conspicuous in the Vertical pose where the 

average roll was approximately ~ 78°. This number decreases to about ~ 62° on average 

fo the Parallel pose and ~ 58° for the Forward pose. The results were constant for all 

POM (Elbow POM, Middle POM, Wrist POM). 
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5.4.7 Involuntary device rolls 

We studied the amplitude of involuntary rolls produced while performing translations 

over the length of the forearm (i.e. on the Length POM). This measure is calculated as 

follows: first, we collect the maximum and average degrees of roll observed for each trial. 

Then, we subtract the average roll of the device from the maximum roll observed. This 

gives us the maximum involuntary roll for the trial in question. The results are presented 

as averages accompanied by 95% confidence intervals. 

 

Figure 5.15: Device rolls when performing translation on the length POM (degrees) 

Results show that on average, the involuntary roll did not exceed 13° for the Forward 

pose, 8,2° for the Parallel pose and 2,7° for the Vertical pose (Figure 5.15). The Vertical 

pose clearly triggers less involuntary rolls than the other poses. It also seems that the 

Forward pose is the most prone to unwanted rolls. These findings are in line with the 

results of the studies conducted on RPM: the involuntary rolls of RPM when performing 

translations were of 12° on average [140]. 

5.4.8 Fatigue 

Fatigue was measured using a 6–20 Borg scale [32] (Table 5.1). The average Borg 

score obtained ranged from ’extremely light’ for the Forward (8,63) and Parallel (8,79) 

pose to ’very light’ for the Vertical pose (9,58) (Figure 5.16). The pose does not appear 

to affect the fatigue scores. Overall, participants did not consider the interaction with the 

device tiring, despite using the device for at least 25 minutes. It should also be noted that 

while participants had the opportunity to take breaks during the experiment between 

each group of 10 trials, only one participant asked for a break. 
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Rating Perceived Exertion 

6 No exertion 

7 Extremely light 

8  

9  

10  

11  

12  

13  

14  

15 Hard 

16  

17 Very Hard 

18  

19 Extremely hard 

20 Maximal exertion 

Table 5.1: Borg Scale 

 

Figure 5.16: Fatigue 

5.5 Discussion  

The findings presented above consolidate our hypotheses that on-body tangible 

interaction is a promising approach for use in immersive visualizations. 

5.5.1 Support stability 

Elbow and wrist movements are minimal, making the forearm a steady and reliable 

support for interaction. For this reason, we believe that tangible interactions on the 
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forearm could be performed without locating the position of the arm in real time: the 

pose could be deduced from the movement of RPM relative to the user. 

5.5.2 Places of motion 

The surfaces covered while performing translations around the forearm were small 

enough to consider three distinct regions of the forearm for interaction. However, the 

dispersion of these surfaces showed that they overlap, making it difficult to employ more 

than 2 distinct regions of the forearm in practice. However, we believe that with a visual 

feedback showing the position of each region on the forearm in the immersive 

environment, the three regions would be easily distinguishable. This hypothesis should be 

studied in a complementary study. 

5.5.3 Other physical manipulations of RPM 

The involuntary rolls observed during the translation of RPM in a Length POM were 

minimal and in line with the previous findings of Perelman et al. [140]. The rolls observed 

when translating RPM around the forearm seemed voluntary, since participants 

systematically tilted the device. These rolls go up to 78° regardless of the Pose or the 

POM on which the interaction was performed. It thus appears impossible to distinguish 

a translation around the forearm, from a roll or rotation. Consequently, these two physical 

manipulations cannot be performed for different tasks around the forearm. 

5.5.4 Mapping between gestures and tasks 

Overall, results show that the translations performed on the length POM were the 

most stable in terms of involuntary rotations and rolls in addition to offering the largest 

exploitable interaction surface. Therefore, these gestures can potentially be used to control 

a large set of values, to have a substantial precision or a greater data coverage. These 

gestures could be used for instance to manipulate slider type controllers that require a 

certain degree of precision depending on the manipulated data. The translations 

performed in the Width POM seem to be better adapted to controllers that do not require 

a large amplitude given the limited interaction surface they allow. We believe that they 

could be mapped to “ Rate control”  type controllers for example. They could also be 

used to control a menu with a limited number of sub-items or to activate toggle menus 
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(two modes, discrete two-state tasks). In the following section, we describe two usage 

scenarios that illustrate a possible and concrete use of on-body tangible interactions. 

5.6 Usage Scenarios 

Taking into consideration our findings, we will illustrate a detailed use of the On-

body tangible interaction approach presented in this chapter, through two concrete 

scenarios: 1) an interior design scenario where we show a possible use of the approach to 

manipulate simple 3D objects; 2) a more elaborated scenario detailing a possible use of 

on-body tangible interactions to interact with multidimensional data. 

5.6.1 Interior design 

Jeremy is an interior designer. He rethinks the interior of his clients’ homes to make 

them more functional and pleasant by choosing the appropriate furniture. To this end, 

Jeremy visualizes the furniture in the final space using a mixed reality headset (Hololens). 

He manipulates RPM on the body to move, rotate and scale the virtual furniture. 

To move the furniture, Jeremy uses RPM on the Length POM on the forearm. He 

puts his forearm on the pose representing the movement to be made and adjusts the 

position of the piece of furniture by performing translations of RPM over the length of 

his forearm. For example, if he wants to bring the furniture closer to him, he places his 

forearm in the pose Forward and performs translations of RPM over the length of his 

forearm, from the wrist to his elbow, whereas the Parallel pose allows him to move the 

piece of furniture to the right/left. The Vertical pose allows him to adjust the height of 

a photo frame or a mirror for example. 

Jeremy can also rotate furniture using the same principle as for translations. He puts 

his forearm in the pose representing the axis in which to make the rotations and perform 

translations around the forearm, on the Width POM, according to the direction of the 

rotation to make. 

5.6.2 Data exploration 

Emily is an air traffic controller. Part of her work consists of improving traffic 

management in the control tower [90] (analyzing past conflicts, improving the ecological 



Chapter 5 – Interaction with Immersive Environments 

157 

 

 

footprint, increasing the profit by improving the trajectories of aircraft…). To this end, 

Emily must analyze large quantities of aircraft data (time, position, altitude, speed…) on 

a regular basis [90] The manipulated data represents complete aircraft journeys, from 

takeoffs to landings, containing multiple dimensions. Visualizing this data in an immersive 

context helps Emily having an optimal understanding of it. Indeed, by anchoring the 

volume of data to a wall for example, she can move around it and analyze it from different 

angles. She can have an overview of the data by moving away from it, or a more detailed 

view by getting closer. For instance, when Emily, facing the wall, observes a high 

concentration of points, she knows it probably represents an airport. A side view of data 

allows her to observe the most used altitudes by the aircraft. Standing with her back to 

the wall and looking at the data, Emily can observe the main airways.  

Emily uses a mixed reality headset (Hololens) to visualize the data and our device 

(RPM) to interact with it. The tasks Emily performs on the data are [54, 90] selecting 

data using range-sliders; applying a command on the selected data (e.g. data 

subsampling); changing colors; scaling, etc. Emily has configured her system so that each 

pose of the forearm represents a coordinate in the immersive visualization: the latitude is 

represented by the Forward pose, the longitude by the Parallel pose and the altitude by 

the Vertical pose. 

Range sliders are controllers that allow the user to select values included in a range 

(an interval). The range sliders are composed of two cursors, one defines the minimum 

value and the second defines the maximum value. To control the range slider and select 

data, Emily uses translation over the length of the forearm (on the Length POM). The 

cursor to manipulate is automatically selected according to the starting position of RPM 

on the forearm: if RPM is placed on the Wrist POM, the cursor defining the maximum 

value is manipulated; if RPM is placed on the Elbow POM, the cursor defining the 

minimum value is manipulated; and finally, if RPM is placed in the Middle POM of the 

forearm, the two cursors are moved simultaneously while maintaining the range length 

initially defined. 
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5.7 Perspectives 

The next step in this work will consist in conducting studies to validate the accuracy and 

usability of the physical manipulations for basic tasks, like controlling a slider. Due to its 

complexity, the study described in this chapter was limited to translations. A short-term 

perspective would be to study the other physical manipulations offered by the device. A 

first conclusion regarding rolls and rotations can be deduced from our experiment: it is 

impossible to distinguish translations from rolls when performing translation around the 

forearm (Width POM). This also closes the door to the exploitation of combined physical 

manipulation (simultaneous rolls and translations) in the Width POM (i.e. translations 

around the forearm). However, this is not the case for translations performed on the 

length of the forearm thanks to the minimal involuntary rolls observed in this POM. 

Therefore, we can explore potential usages of the approach that would exploit the 

combined physical manipulations of the device. 

5.8 Conclusion 

In this chapter, we proposed, described and studied a new paradigm for interaction 

with immersive visualization: On-Body tangible interactions. This approach is based on 

the use of the forearm as a physical support for tangible interactions using a device with 

multiple degrees of freedom. It takes advantage of the body’s natural capacity to sense 

its own body parts (proprioception) to allow the user to perform tangible interactions on 

the body, without having to switch his attention from the data and minimizing the 

fatigue. 

We proposed a design space for the support of interaction. It describes the Pose 

(Forward, Parallel, Vertical) in which the interaction is performed, the Place of Motion 

(Length POM, Width POM: Elbow POM, Middle POM, Wrist POM) of the interaction 

and the range of motion of the interaction. To explore the feasibility of such an approach, 

we conducted a study with the following objectives: studying the stability of the forearm 

as a support for tangible interaction; studying the stability of the RPM mouse; measuring 

the Range of motion of translation in each (Pose, Place of Motion) couple; identifying 

the regions of the forearm on which translations can be performed distinctly; measuring 

the fatigue relative to this type of manipulations. 
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The results showed that on-body tangible interactions are a promising approach to 

interact with immersive visualizations since the interaction support (forearm) is stable 

and can support a tangible interactions appropriately. The device we used (RPM) offers 

enough degrees of freedom, precision and is stable enough to be used in an immersive 

context. With an adequate visual feedback, the user could benefit from 3 regions for 

interaction around the forearm. The study also showed that users found the approach 

comfortable. 

Finally, we illustrated the possible usages of this approach through two concrete usage 

scenarios: the first scenario describes interaction with fairly simple 3D objects, while the 

second explores a more elaborated interaction with multidimensional data. 
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6 The neOCampus project 

6.1 Introduction 

This thesis is part of the neOCampus project, an initiative of the University of 

Toulouse, launched in June 2013 in a bid to create an innovative and smart campus. The 

objectives of the project are three-fold: 1) to improve the daily comfort of the university 

students and personnel; 2) to decrease the ecological footprint of its buildings; 3) to reduce 

its operating costs (fluid, water, electricity…). To attain its objectives, the neOCampus 

project relies on repurposing the large number of connected devices available on the 

university campus and completing this net of connected devices with eco-friendly 

connected sensors, to better gather and exploit data.Similar to a small city with its 407 

000m2 of built-up areas, 70 research structures, several solutions of mobility and in excess 

of 39000 employees and students, improving the quality of life inside the University of 

Toulouse’s campus can be equally challenging [69]: 

- The heterogenous devices and sensors composing the campus and designed to 

observe specific features result in large volumes of heterogenous data, that require 

the creation of new tools and norms to explore and manage them. 

- The non-linearity of the campus where a small change in the input may result in 

big output changes make them difficult to control and predict. 

- The openness of such systems, where sensors and devices can be easily added or 

removed is a key component in making the system sustainable and needs to be 

facilitated. 

- The spatial distribution of the campus’s entities may require new types of 

communication technologies and infrastructure and may even change the way 

systems are developed for this platform. 

- The large-scale collection of data in such a large campus may introduce privacy 

issues and require the design of new development methodologies taking into 

consideration privacy when designing IT applications. 
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The challenges are numerous and require a wide range of skills to be addressed. To 

reach its objectives and address those challenges, the neOCampus project favoured a 

multidisciplinary approach which comes from the 11 laboratories participating to the 

project and the different fields that they cover (a detailed listing of the participating 

laboratories can be found here28). Each laboratory brings its own scientific expertise, thus, 

transforming the university into a platform for innovative experiments performed at large 

scale and in vivo (with real end users, in real situations).  

HCI axis of the neOCampus project 

As one of the participating partners and an HCI oriented research team, the Elipse 

research group29 focuses on the challenges related to the exploration of the complex data 

provided by the numerous sensors and devices distributed over the campus. It aims to 

design and evaluate novel interaction solutions to visualize and interact with these data. 

The possible usages of these solutions include, but is not limited to: 

- To review or monitor energy consumption data in real time or deferred at various 

scales (building, room, sensor…). 

- To pilot a simulator at campus scale that would include: energy consumption 

data, weather data, crowd behaviour, etc. 

- To offer intelligent solutions to remotely control heating systems, sunblinds, 

lights, etc. 

However, designing interactive solutions for such a diverse context is not 

straightforward. The campus provides different types of data that can be exploited by 

several profiles of users and in different ways, some may just want to visualize data while 

others would want to extract meaning from it. An important part of designing these 

interactive solutions consists in identifying the potential users of the solution, their needs 

as well as the manipulated data. 

                                         

28 https://www.irit.fr/neocampus/ 

29 Elipse is an interdisciplinary research group (computer scientist, neuroscientist, HCI specialist) 
focusing on Advanced forms of Interactive Techniques as research tool and research object. 

https://www.irit.fr/-Equipe-ELIPSE- 

https://www.irit.fr/neocampus/
https://www.irit.fr/-Equipe-ELIPSE-
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In this chapter, we will detail a description space built to illustrate the different 

aspects of data exploration in the neOCampus context, we demonstrate its use through 

a set of interactive situations and we discuss our contributions in relation to it.  

6.2 Description space 

To go beyond the simple design of ad hoc interactive solutions on the campus, we 

built a description space that identifies and organizes the relevant characteristics to 

consider when designing these solutions.  

In this section, we will present the description space’s dimensions and illustrate them 

through a set of interactive situations related to the neOCampus context. 

This categorization is the result of a collaboration with the 11 laboratories 

participating to the project and several in-situ observations. It has been validated by the 

steering committee of the project and was one of the deliverables of an ANR30 project31 

(project link). 

6.2.1 Dimensions 

6.2.1.1. Users 

The user dimension is a classic HCI criteria, when designing an HCI system, it is 

important to focus on the potential users of the system and the way each category of 

users is going to use it. We classify the users in three categories:  

Casual 

The Casual category includes all users that will use the system occasionally. In the 

context of the neOCampus project, it could translate into visiting researchers, decision 

makers, visiting elected officials, etc. 

                                         

30 http://www.agence-nationale-recherche.fr/ 

31 http://www.agence-nationale-recherche.fr/Project-ANR-15-CE23-0001 

http://www.agence-nationale-recherche.fr/Project-ANR-15-CE23-0001
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Regular 

The Regular category includes users that will use the system in a regular fashion 

without it being their daily work tool. In the context of the neOCampus project, it could 

translate to students, university staff, faculty members, etc. 

Frequent 

The Frequent category includes users for whom the system is a daily working tool. In 

the context of the neOCampus project, it could translate to the local maintenance staff 

like plumbers, heating specialists, electricians, etc. 

6.2.1.2. Services provided 

We identified four types of services the system can provide: 

Visualization 

A Visualization service offers the user the necessary tools to view data (energy 

consumption, affluence, temperature, etc). 

Comprehension 

A Comprehension service enables the users to understand and analyze data. An 

example would be diagnosing an electricity overconsumption using energy consumption 

data. 

Production 

A Production service supports the user in producing something to enrich the data. 

An example would be an electrician generating an intervention roadmap from building 

locations data and a list of interventions. 

Collaboration 

A Collaboration service allows a group of users to aggregate, inform and create 

knowledge from their collaboration. 

6.2.1.3. Data exploited 

We identified four types of data that can be manipulated: 
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Raw data 

It represents the data as collected from the sources, unmodified. An example would 

be energy consumption data: water, electricity, gas, etc. 

Activity data 

It represents the data inherent to the activity. An example would be the post-

processed energy data used to diagnose an electricity overconsumption. 

Incident data 

It represents the data related to an improper execution of an activity which may 

generate an alert or a blockage that may use or generate specific data. An example would 

be the data related to a heating problem, a network issue or a power failure. 

Ambient data 

It represents the data characterizing the environment in which the activity takes 

place. It may refer to the data related to the interior and exterior environment of the 

campus: temperature, weather, affluence, CO2 consumption, confort level, diversity of 

flora and fauna of the local ecosystem, etc. 

6.2.1.4. Deployment context 

We identified two possible deployment contexts: 

Open-access system 

Open-access systems are usually available in public places. They are accessible to the 

general public. The interaction ressources in those systems are usually scalable. Their 

numbers and types vary depending on: the interaction devices used by the users 

interacting with the system (Smartphones, tablets, wearables, etc); the interaction space 

already available (large displays, interactive tabletops, etc). 

Dedicated-access system 

Dedicated access systems are usually available in a fixed context like an office or a 

control room. In those systems, the interaction ressources are stable, predefined and 

always available. 
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6.2.2 Diagram representation 

The dimensions described above are summarized in the following diagram (Figure 6.1): 

 

 

Figure 6.1: Description space 

6.2.3 Illustration of the description space 

In this subsection, we will describe three interactive situations in the context of the 

neOCampus project. They represent situations of interest to us and illustrate the different 

aspects of data exploration identified in the description space. 

As the sole aim of these scenarios is to illustrate the description space defined 

previously, no interactive solution is going to be proposed to address them in this section. 
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6.2.3.1. Scenario A: energy consumption visualization 

Description 

In the course of the promotion of the neOCampus project, its steering committee 

invites an elected official of the city to visit the campus of the University of Toulouse and 

to attend a demonstration of the project (Figure 6.2).  

An interactive demonstration is prepared: it allows the visualization of different data 

provided by the numerous sensors installed on the campus (water, electricity, gas, 

temperature, weather, affluence, CO2 consumption…).  

The setup of the demonstration contains two displays: a tabletop containing the 2D 

map of the university and a second display showing complementary information. 

On the day of the demonstration, the elected official is received by a representative 

of the Department of Heritage and Logistics of the University of Toulouse. 



 Chapter 6 – the neOCampus project 

169 

 

 

 

Figure 6.2: Scenario A, energy consumption visualization. 
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Characterization 

User(s): The elected official is a Casual type of users as he never used the system 

before. 

Service(s) used: The system is used to visualize data and compare the data provided 

by several buildings. The service provided by the system is a Visualization service. 

Exploited data: Two types of data are manipulated in this interactive situation: Raw 

in electricity, water and gas; Ambient in temperature, affluence, CO2 consumption. 

Deployment context: As the demonstration and the data provided are public, the 

system used in this interactive situation is an Open-access one. 

Description diagram: The characterization translates to the following description 

diagram (Figure 6.3): 

 

Figure 6.3: Description diagram of scenario A 
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6.2.3.2. Scenario B: distant collaboration  

Description 

A lecturer arrives at his conference room and finds that it is already taken. He contacts 

the local logistics service (LS). The service deals with requests related to reservations of 

conference rooms (Figure 6.4). 

The logistics service (LS) uses the interactive system to find a conference room that 

is heated and contains the required equipment for the lecture to take place. To accomplish 

this task, the LS checks the teaching schedule, the available conference rooms and the 

equipment list of each conference room. The LS can guide the lecturer to his new 

conference room if necessary. 

 

Figure 6.4: Scenario B, distant collaboration 
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Characterization 

User(s): the LS agent uses the system daily as his principal work tool. In this situation, 

the user is a Frequent user. 

Service(s) used: To accomplish his task, the LS agent visualizes different types of 

data. The service provided by the system in this situation is a Visualization service. 

Exploited data: the LS agent uses data relative to his activity to find a suitable 

conference room for the lecturer. 

Deployment context: the system is not available to the public and is dedicated to the 

work of the LS agent. It is a Dedicated-access one. 

Description diagram: The characterization translates to the following description 

diagram (Figure 6.5): 

 

Figure 6.5: Description diagram of scenario B 
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6.2.3.3. Scenario C: Itinerary Creation 

Description 

Failures on several locations in the electrical network of the campus are reported to 

the assets and logistics service (ALS) of the University of Toulouse. The service is 

responsible for the safeguarding of assets and logistical support which includes electrical 

maintenance works. To address the reported failures, the ALS has two options: 

Scenario C1: request the intervention of the local maintenance group which sends one 

of its electricians to intervene on the failures on-site (Figure 6.6). Before intervening, the 

electrician diagnoses the issues and identify the probable nature of the faults using the 

energy consumption data. Then, he generates an intervention itinerary containing the 

location of each failure and the electrical equipment installed in each of these locations.  

 

Figure 6.6: the local electrician is diagnosing the failures and preparing his intervention plan 

Scenario C2: If the local maintenance group is unable to intervene, the Construction 

and Study Department is contacted (CSD). This service deals with requests related to 

mandating external companies for services on the university campus. In this case, the 

service relates to intervening on the electrical failures described previously. Two possible 

sub-scenarios arise: 

- Scenario C21: The external company is assisted by the CSD. The CSD completes 

the external company’s electrical expertise with its campus expertise and helps it 

generate an intervention roadmap (Figure 6.7). 
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Figure 6.7: the CSD and the external electrician collaborating to diagnose the failures and 
prepare an intervention plan 

- Scenario C22: The external company intervenes by itself, without the assistance 

of the CSD (Figure 6.8). In this case, the company’s electrician uses the system 

to consult the history of failures, the location of the failures, the equipment 

installed in each one of these locations and the current energy consumption data. 

Then, he generates an intervention roadmap.  

 

Figure 6.8: the external electrician is diagnosing the failures and preparing his intervention 
plan without the assistance of the CSD 

Characterization 

User(s): In scenario C1, in which the local maintenance group intervenes, the 

electrician uses the system as a daily work tool which makes him a Frequent user. 

In scenario C21 and C22, the electrician sent by the external company uses the system 

from time to time making him a Casual user. While it is not his daily work tool, the CSD 

agent uses the system regularly. He is a Regular user of the system. 
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Service(s) used: The system allows the users to visualize data (Visualization), supports 

them in the diagnosis of the failures (Comprehension) and the joint (Collaboration) 

generation of an intervention itinerary (Production). 

Exploited data: In the two interactive situations, the users manipulate Incident data 

(history of failures), Ambient data (locations of the equipment concerned by the failure), 

Raw data (energy consumption data). 

Deployment context: The access to such a system is not available to the general 

public. It is a work tool dedicated to the users described above. 

Description diagram:  

 

Figure 6.9: Description diagram of scenario C1 
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Figure 6.10: Description diagram of scenario C21 

 

Figure 6.11: Description diagram of scenario C22 
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This categorization could be used to identify recommendations for the design of 

interaction techniques for each value and/or dimension of the description space. 

Moreover, it can be used to consider possible improvements to current interaction 

techniques over one of the axes like adding a new service, widening the type of data that 

can be manipulated through it or adapting it to a public usage. 

6.3 Translating contributions into concrete 

usages 

This section will discuss the contributions proposed in this thesis in relation to the 

description space introduced previously. Each subsection will focus on one interaction 

solution and will detail which values of each dimension the interaction solution could 

cover. That is to say, identify: 

- The profile of users it could attend to. 

- The types of data it could manipulate. 

- The type of service it could provide. 

- The type of system it would be suited to. 

At the end of each discussion, a concrete example of each solution applied to the 

neOCampus project will be presented if applicable. Otherwise, a scenario highlighting its 

potential use will be described. 

6.3.1 Split-focus: interaction in large displays 

6.3.1.1. Discussion 

The split-focus visualization (Chapter 3) and interaction solution is easy to 

understand and to use. It does not require training nor an adaptation period which makes 

it suitable for all profiles of users. 

In its current version, split-focus does not offer a solution to visualize raw data directly 

and is used instead to show graphical representations of data similar to the molecular 

interaction maps described in Chapter 3, 3.1. 
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Split-focus allows the user to visualize and interact with data to better understand it. 

Split-focus was not evaluated nor designed to produce something or to support 

collaboration. 

Although it helps with data visualization thanks to the overview + detail multi-

display paradigm it is based on, the interaction solution was designed to address a specific 

problem: interaction with multiple regions of interest of the same visualization 

simultaneously. Today, this problem is more pertinent for a professional exploration of 

data which takes place mainly in a dedicated-access system.  

 

Figure 6.12: Description diagram of the values overed by split-focus 

6.3.1.2. Concrete application of split-focus in the neOCampus project 

Split-focus (chapter 3) could be used in scenario A. In this scenario, the university 

receives an elected official from the city. In its bid to promote the project and get more 

funding from the city council, the university prepared an interactive demonstration of the 

project. The demonstration includes the real time monitoring of energy consumption data, 

comparison between the consumption data of multiple buildings. 
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While the interaction solution has been designed for an MDE composed of a large 

screen and a tablet, it can be adapted to any combination of displays provided that one 

of them offers enough screen real estate to display the large overview (map). 

We implemented an application using the split-focus approach for a concrete usage in 

Figure 6.13. A video demonstrating it can be found here32. 

 

Figure 6.13: A concrete implementation of the split-focus solution in the neOCampus 
project (2 detailed views configuration) 

The implemented solution offers the following: 

- The exploration of the map using up to 4 detailed views. 

- A circular menu allowing the user to switch between the views and perform 

additional actions. 

- A quick way to translate views from one region to the other: the translation view 

described in Chapter 3, 3.2.2.3. 

                                         

32 https://www.youtube.com/watch?v=E1HxtnfzPB0 

https://www.youtube.com/watch?v=E1HxtnfzPB0
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- The visualization of energy consumption data: the data is displayed in the colored 

part at the top of each detailed view. The displayed data is updated when the 

view is translated. 

- The possibility to switch between numerous energy consumption data: water, 

electricity, gas, etc. Switching between the data displayed is done by performing 

swipe gestures on the colored part of the detailed view. 

- The possibility to keep the views coherent, by locking them in a specific region of 

the overview. 

- The possibility to show different types of data for the same building by linking 

the translations of two detailed views. 

- The possibility to compare energy consumption data for up to 4 regions of the 

map.  

In its actual version, the split-view interface supports visualization and comprehension 

of data. It can easily be adapted to support the user in producing something from the 

visualized data by introducing new functions through menus or multitouch gestures. 

6.3.2 TDome: A multiple degrees of freedom device to 

interact with multi-display environments 

6.3.2.1. Discussion 

TDome (Chapter 4) was designed to improve interaction in working multi-display 

environments. It is most probably a daily working tool that involves frequent users. The 

type of data exploited depends on the task at hand. With its large interaction vocabulary, 

TDome could be adapted to support numerous tasks. Multi-display environments in a 

work context are usually dedicated-access systems. 
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Figure 6.14: Description diagram of the values overed by TDome 

6.3.2.2. Concrete use of TDome in the neOCampus project 

TDome can be used in scenario B in which the user (LS Agent) interacts with a multi-

display environment (MDE) to find a suitable room for a lecture. 

The configuration of the working MDE is as follows (Figure 6.15): 

- An interactive tabletop displaying a map highlighting the buildings, classrooms, 

conference rooms. 

- A screen displaying the information related to each room’s equipment and 

ambient data (temperature, affluence, etc). 

- A third display showing the teaching/lectures schedule and the available rooms. 
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Figure 6.15: A possible use of TDome in the neOCampus project 

The steps required to find an available conference room, that is heated and contains 

the equipment required by the lecturer are as follows: 

- Interaction with the interactive tabletop to have a broad idea of the available 

conference rooms around the position of the lecturer. This task includes: 

o Navigating in a map (pan and zoom) 

o Selecting a region and sending it to the calendar display. 

- Redirecting the input to the calendar display and interacting with it. 

- Selecting a conference room from the agenda display to visualize the available 

equipment and the temperature of the conference room. 

The tasks described above are common tasks in MDEs. We showed in Chapter 4 that 

TDome is suitable to perform such tasks. In this context, TDome’s translations facilitate 

panning on the map and the zoom function can be mapped to rotations. Sending the 

selection from the interactive tabletop to the calendar display involves content transfer 
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between two displays, interacting with the second display involves input redirection. With 

a good understanding of the displays composing the MDE, TDome’s tilting can be used 

to select the display to interact with. Its tunnel implementation (Chapter 4) can be used 

to transfer content from one display to the other. 

With an affordable and autonomous version of TDome, its use could be extended to 

open-access systems. 

6.3.3 On-body tangible interactions for immersive data 

visualization 

6.3.3.1. Discussion 

The proposed interaction solution aims to facilitate interaction with complex data 

visualized in immersive environments (Chapter 5). Due to the requirement of interaction 

with a multiple degrees of freedom device and the type of tasks performed on complex 

data, the profiles of users that would use such a system are regular or frequent users. 

The display capabilities of immersive systems allow them to display all types of data. 

The interaction technique is not designed for data in particular but to interact with the 

immersive system. Thus, it can cover the four types of data. 

The interaction technique was designed to support several tasks related to data 

exploration (visualization, comprehension and production) and interaction with 

immersive system.  

While it may be adapted to other configurations, the current design and study of the 

approach pertain to a professional, dedicated-access system. 
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Figure 6.16: Description diagram of the values overed by our on-body tangible interations 
approach 

6.3.3.2. Concrete application of the interactive solution in the 

neOCampus project 

This approach could be used in the activity described in scenario C albeit in a different 

setup. The local electrician has a list of failures on several sites of the university campus 

and he wants to visualize the energy consumption data to diagnose the failures. To 

conduct his task, he exploits the spatial capabilities of a hololens headset and the on-

body tangible interaction approach. 

The system allows the electrician to display a specific type of data (electricity 

consumption for example) at a specific point in time and in a specific location. The data 

is multidimensional. The electrician distributes it spatially over the 3 egocentric axes. 

The system allows him to switch the dimension of data attached to each axis and 

offers him the possibility to anchor the volume of data on a specific physical position 

which helps him in his understanding of it. Indeed, the electrician can have an overview 
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of the data by moving away from it, or a more detailed view by getting closer. He can 

also observe data from different angles if necessary. 

 

Figure 6.17: A possible use of the On-body tangible interactions approach in the 
neOCampus project 

The on-body tangible interaction approach (Figure 6.17) allows him to interact with 

the three axes using a multi-degree of freedom device supported by the forearm with 

efficiency and without dividing his attention between the data and the interaction tool. 

The electrician can use the system to select data, apply commands on it, scale it, 

rotate its visualization, etc. These tasks are mapped to different poses of the forearm, 

different regions of the forearm and different physical manipulations of the device 

(translations, tilting, rotations). 

Although it has not been evaluated in a collaborative context, the interaction 

paradigm can support collaboration in several ways: The users can use one device for 

interaction, passing it from one user to the other or they could use several devices. 
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6.4 Conclusion 

In this chapter, we described the neOCampus project and highlighted the related 

objectives falling in the scope of this thesis. They consist in addressing the challenges of 

exploration of the complex data provided by the numerous sensors and devices distributed 

on it. 

To illustrate the different aspects of exploration of data in such a large context, we 

proposed what we called a “description space” which aims to identify and organize the 

relevant characteristics to consider when designing interactive solutions. In such contexts, 

the aspects covered by the description space includes the profiles of users the interactive 

solutions are designed for, the manipulated data, the type of services provided and its 

context of deployment.  

We demonstrated the use of the description space through 3 scenarios representing 

situations of interest to us and covering the different aspects of interaction with complex 

data. We demonstrated the potential use of this thesis’s contributions in this project by 

discussing how they could be applied to address the challenges of interaction in the 3 

aforementioned scenarios. We detailed the profiles of users each solution targets, the type 

of data that can be explored through it and the services it provides. 

In terms of perspectives, a potential use of the description space resides in identifying 

recommendations for the design of interaction techniques for each value and/or dimension 

of the description space. 
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7 Conclusion & Perspectives 

This chapter provides a summary of the main contributions of this thesis and discusses 

the associated medium-term and long-term perspectives. 

7.1 Thesis summary 

Today, several display spaces are available for data visualization. They offer numerous 

advantages and introduce new interaction challenges. In this manuscript, we discussed 

three display environments for data exploration: large displays, multi-display 

environments (MDEs) and immersive environments. We described them and detailed 

their characteristics, we presented their advantages and identified the interaction 

challenges they introduce. In this thesis, our goal was to improve interaction in each one 

of the previously cited environments. Below, we summarize our main contributions.Our 

work on large displays consisted in improving interaction with several regions of interest 

simultaneously. Our proposed approach is based on the use of a multi-view approach. We 

evaluated the influence of the number of detailed views on the user performance. To this 

end, we designed a visualization interface that offers multiple detailed views. The interface 

is based on an Overview+detail approach deployed on two displays: a large display 

showing the overview and a tablet displaying the detailed view (Figure 7.1). Our design 

follows Baldonado et al. [10] guidelines for multiple views. Baldonado [10] proposed a set 

of rules that helps designers assess the adequacy of multi-view systems for their 

application and make design choices related to the use of  the views. They also help 

usability experts evaluate such systems. Our interface offer two interaction techniques to 

navigate in the overview: a basic one that consists in regular pan directly on the detailed 

view; a more advanced one in the form of dedicated view we called the translation view, 

it allows users to translate the detailed views by manipulating their icons on a mini-map. 

The translation view allows users to use multitouch to translate several detailed views at 

the same time. 
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Figure 7.1: the split-focus technique 

Using our interface, we experimentally evaluated the effect of the number of detailed 

views in a task related to the manipulation of large graphs in which users were asked to 

create a connection between 2, 3 or 4 nodes. We evaluated three multi-view 

configurations: one view (1V), two split views (2V) and four split views (4V). The results 

show that for tasks involving 4 regions of interest, 4 detailed views was the most efficient 

configuration. However, users performed similarly in 2V and 4V for tasks involving 2 

regions of interest. The findings related to the use of the translation view, which allowed 

users to translate the detailed view in parallel through multi-touch interactions, showed 

that users did not take full benefit of that parallelism.  

Next, we focused on multi-display environments (MDEs). We described their 

characteristics, highlighted their heterogeneous nature as well as the benefits they offer 

and the challenges they introduce. We identified two types of MDEs: MDEs deployed in 

a public context and MDEs deployed in a work context. While they share the same 

characteristics and interaction requirements (input redirection, output redirection, 

reachability, personal interaction), the profiles of their potential users and the type of 

tasks performed on them are different. Indeed, the users of public MDEs are usually 

passers-by, they may not engage in interaction with the MDEs if it’s too difficult or takes 

too long. They may have never used the system before which makes them novice users 

requiring quick and easy to understand interactions. Moreover, they are mainly used to 
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display data as they offer little or no means of interaction. To improve interaction in 

public MDEs, we explored the use of everyday objects as tools to perform tangible 

interactions to interact with these environments. They are always available, they offer 

easy to perform interactions and their shapes may help suggest their potential use which 

could translate into easy to understand interactions. We conducted a creativity study to 

identify the way to use objects of different shapes and materials to perform common tasks 

in MDE and amended an existing taxonomy to classify the proposed gestures. Among 

our findings was the fact that participants took benefit of the material of the object when 

it was soft, rather than its shape with the exception of the spherical object. Indeed, despite 

the soft nature of the ball, participants preferred exploiting its rounded shape for their 

proposed gestures.  

Building on the findings of the creativity study, we proposed TDome, a rounded 

device designed to overcome the lack of a unified device or interaction technique dedicated 

to multi-display environments in a work context. TDome is an input and output device 

with a semi-spherical base offering multiple degrees of freedom (rolls, rotations and 

translations). The device is augmented with a touchscreen that allows it to display 

information and detect touch input. The combination of physical manipulations and 

touch gestures makes TDome a robust device and increases the number of available 

gestures. We discussed the suitability of TDome in addressing the main MDEs 

requirements, while avoiding the need to have more than one device in the workspace, 

and demonstrated its benefits through a set of interaction techniques (Figure 7.2). 
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Figure 7.2: a) display registration using its embedded camera, b) device selection and c) 
cross-display data transfer 

We evaluated the usability of the device through an experimental study. The results 

show that up to 71 combined gestures can be comfortably performed with the device. We 

explored potential mappings of TDome gestures to MDE’s tasks through a user survey. 

Results show that some combined gestures are more prone to be used in specific tasks 

than others. In general, we find participants are able to match TDome features to MDE 

tasks. 

Finally, we explored on-body tangible interactions in immersive environments with 

complex data requiring multiple degrees of freedom. The approach is based on the use of 

a multi-degrees of freedom device (RPM) supported by a body part (forearm). The use 

of RPM is motivated by its multiple degrees of freedom and its suitability for interaction 
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with multidimensional data. The use of the forearm as a support is motivated by its social 

acceptability, its large surface of interaction and its accessibility. The combination of the 

multi-DOF mouse and the forearm allows the user to move in his environment to explore 

data, improve the accuracy and avoid the inherent fatigue of mid-air interactions 

(Figure 7.3).  

 

Figure 7.3: On-body tangible interaction for immersive data visualization 

We proposed a theoretical contribution in the form of a design space describing the 

main characteristics of the approach and a practical contribution through its evaluation. 

To validate the adequacy of such an approach for immersive environments, we conducted 

an experiment aimed at establishing the range, stability and comfort of gestures 

performed with the device on the forearm. 

The results show that: the forearm is a suitable support for tangible interactions 

(minimal movement during interaction); the forearm offers a large area where interaction 

is possible; the device was stable when used to perform physical manipulations on the 

forearm; no fatigue was reported by the participants when using the approach.  

We discussed possible mappings of the tangible gestures on the body to different 

controls. We highlighted the potential of translations performed on the length of the 

forearm for controls requiring substantial precision or a great data coverage; we also 

discussed the possible use of translations performed on the width of the forearm for “ Rate 

control”  type controllers. 
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7.2 Future work 

In this section, we present and discuss research opportunities and ideas for future 

work. 

7.2.1 Medium-term 

Below, we present several medium-term perspectives related to the work conducted 

in this thesis. 

7.2.1.1. Large displays 

In our work on improving interaction with multiple regions of an overview 

simultaneously, we proposed an overview + detail visualization interface where multiple 

detailed views are displayed on a tablet. The visualization technique allows the translation 

of the detailed views in the overview through a view we called “translation view”. It allows 

the users to move up to 4 detailed views simultaneously using multi-touch interactions 

(Figure 7.1).  

One of the findings of our evaluation was that users did not fully exploit the parallel 

exploration offered by our interface. They found symmetric bimanual multi-touch input 

difficult to perform. An alternative to the use of all fingers for parallel translations of 

detailed views is to repurpose the role of unused fingers. They can be used as modifiers 

for the interaction: to dynamically activate or release locks without using the menu 

designed for that on the detailed view; to perform quick translation movements like 

reverting to a previous position, translating to a corner, translating to the closest detailed 

view (forming a continuous view) …; to increase/decrease the size of the detailed views’ 

icons while translating them; to give a temporary overview of a specific region i.e. while 

translating a detailed view (DV) with one finger, a touch on the overview (TO) with 

another finger of the same hand can display temporarily on DV the area pointed by TO. 

Removing the finger from TO would revert to showing the area covered by the detailed 

view icon. 

It would be interesting to explore these potential uses of unused fingers and evaluate 

them in further depth through the adequate experimental setup. 
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7.2.1.2. Multi-display environments 

In our implementation of TDome to interact with MDEs (Chapter 4), we used a semi-

autonomous version of RPM [140]. Indeed, while the rotations and rolls were detected by 

the inertial measurement unit equipping it, the translations (positions) of the device were 

always detected using an external sensor limiting the usage of the device. The TDome 

prototype used an infrared touch overlay which restricts the use of the device to the 

surface where it is installed and reduces the benefits of the device. The RPM mouse on 

which TDome is based on [140] used the mocap system33. it offers a more precise detection 

of translations, rotations and rolls as well as a larger area where it can be used. However, 

this solution is expensive, cumbersome to implement and difficult to move which hinders 

the portability of the approach. A next step in the improvement of RPM/TDome consists 

in studying the possible use of integrated and affordable sensors to detect translations 

accurately as it is the only barrier to have a fully self-contained device.  

A more research-oriented perspective consists in comparing TDome to several 

baselines in interaction with MDEs. We demonstrated that the device offers a wider 

variety of interactions than existing solutions support which demonstrates that it has the 

potential to be suitable for MDEs. However, this potential is hard to validate without 

any baseline comparison of the device with existing interaction solutions that for example, 

based on studies reported in the literature, has been shown to provide the best support 

in MDEs. Our contribution has no such baseline comparison and instead focuses on 

studying the usability of the device in such context.  

Finally, our work focused mainly on stationary MDEs, it would be interesting to study 

how TDome could be used in more mobile context where smartphones and wearable have 

been used to compose the MDE [46, 72]. 

  

                                         

33 http://optitrack.com/ 
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7.2.1.3. Immersive Environments 

Our work on-body tangible interactions was a first step in evaluating the proposed 

interaction approach. It focused on studying the stability of the forearm and the multi-

dof device. This study was limited to the translations of the device. Indeed, we 

hypothesized that performing translations on the width of the forearm would lead to 

voluntary rolls due to the cylindrical shape of the forearm. This hypothesis, which was 

validated by the study results, prompted us to focus on translations first to evaluate the 

feasibility of the proposed interactions. The next step in this work is to evaluate to 

remaining physical manipulations allowed by the device in the same circumstances. 

Another perspective is to widen the possible use of the forearm for interactions. In 

our design space, the forearm was restricted to the role of simple support. Another 

dimension could specify the role it plays in interaction. It could augment the interaction 

and act as an additional tool of interaction. For instance, the users could move the 

forearm to choose the granularity of control provided by the device. In this case, it acts 

as a modifier for the interaction. It would be interesting to explore the combination of 

support movement (forearm moving) and tangible interactions to construct a bigger 

interaction vocabulary and larger amplitudes. Similarly, the poses we proposed for the 

forearm embody the 3 axes of a three-dimensional cartesian coordinate system. 

Alternative poses could be evaluated to perform interactions.  

 

Figure 7.4: Possible poses 

As an example, a pose between the forward pose and the parallel pose (Figure 7.4) 

could allow the interaction with the two controllers/axes mapped to them simultaneously. 
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7.2.2 Long-term 

7.2.2.1. Displays’ positions and rotations in an MDE 

We highlighted at several points in this manuscript the heterogenous nature of MDEs. 

However, in proposing a multi-dof device to interact with these environments, we focused 

mainly on the device, its suitability for MDEs and its usability in a specific context in 

which the displays were at fixed positions. The displays composing MDEs can offer most 

varying characteristics. Some more than others can influence greatly the way we perform 

interactions with them. The positions and rotations of displays may change frequently in 

those environments: either involuntarily as displays like smartphones, tablets and 

wearables in general are meant to be mobile or voluntarily as users can exploit the spatial 

reconfigurability/flexibility of MDEs to create a work environment in which they feel 

comfortable. In both cases, the relationship between displays changes which could have 

an undesirable effect on the flow of the tasks usually performed on the MDE. For instance, 

the distribution of data between displays may be different in a newly arranged MDE 

which could have a direct effect on how a content transfer task is performed between 

displays. It would be interesting to explore how the topology of displays influences the 

flow of interaction and how TDome is used in different dispositions of displays.  

7.2.2.2. Physical visualizations 

A second long-term perspective consists in exploring interaction with spatial data 

displayed on three-dimensional physical models. This thesis has so far focused on 

interaction with display spaces where data is visualized virtually (large displays, MDEs, 

immersive environments). Recently, growing emphasis has been placed on the 

physicalisation of data i.e. displaying data in the spatial or physical context that 

generated it. Such visualizations are becoming possible through the use of spatial 

augmented reality (SAR) [30]. Several works in HCI are highlighting the benefits of such 

environments and arguing that today’s visualization systems will slowly get enriched with 

physicalized instruments [95]. This type of physical visualizations allow for in-place or in-

situ analytics [62], but also constitute effective communication tools when presenting 

information to non-expert users [96]. They have been used in multiple contexts: to display 

air quality measures in the physical context of the sensors [193]; to present traffic flow on 
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city models [74]; to embed data representations on buildings [74,194]. Research for this 

type of visualizations is still at an early stage and work is still to be done to improve 

interaction with these environments. Our work for immersive environments which focused 

on virtual 3d representation of data could be adapted to these environments. It would be 

interesting to explore it further and evaluate it in such contexts. 

7.2.2.3. Integration of the proposed solutions in the neOCampus project 

A final long-term perspective consists in integrating the developed interaction 

techniques on the campus of the University of Toulouse. Indeed, we briefly touched upon 

potential usages of our contributions on the campus through 3 usage scenarios in 

Chapter 6 (neOCampus) and described their potential use. However, the pertinence of 

the designed solutions to the campus’s challenges have been discussed and evaluated in 

controlled laboratory conditions. Any adaptation of the interactive solutions should be 

evaluated in-situ and in collaboration with the end users.  
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Abstract 

Today’s ever-growing data is becoming increasingly complex due to its large volume and high 

dimensionality: it thus becomes crucial to explore interactive visualization environments that go 

beyond the traditional desktop in order to provide a larger display area and offer more efficient 

interaction techniques to manipulate the data. The main environments fitting the aforementioned 

description are: large displays, i.e. an assembly of displays amounting to a single space; Multi-display 

Environments (MDEs), i.e. a combination of heterogeneous displays (monitors, 

smartphones/tablets/wearables, interactive tabletops…) spatially distributed in the environment; and 

immersive environments, i.e. systems where everything can be used as a display surface, without 

imposing any bound between displays and immersing the user within the environment. The objective 

of our work is to design and experiment original and efficient interaction techniques well suited for 

each of the previously described environments.   

First, we focused on the interaction with large datasets on large displays. We specifically studied 

simultaneous interaction with multiple regions of interest of the displayed visualization. We 

implemented and evaluated an extension of the traditional overview+detail interface to tackle this 

problem: it consists of an overview+detail interface where the overview is displayed on a large screen 

and multiple detailed views are displayed on a tactile tablet. The interface allows the user to have up 

to four detailed views of the visualization at the same time. We studied its usefulness as well as the 

optimal number of detailed views that can be used efficiently.  

Second, we designed a novel touch-enabled device, TDome, to facilitate interactions in Multi-

display environments. The device is composed of a dome-like base and provides up to 6 degrees of 

freedom, a touchscreen and a camera that can sense the environment. Having a unique device for 



 

 

 

 

interaction in these environments limits the homing effect when switching from one device to another 

and leads to a coherent set of interactions with the MDE, contributing to a more fluid task flow, a key 

element in such environments.   

Finally, we introduced a new approach to interact in immersive environments with complex data. 

It is based on the use of the forearm as a physical support to assist tangible interactions with a multi-

degrees of freedom device. We proposed a design space for this approach and we validated its 

feasibility through an experiment aimed at establishing the range, stability and comfort of gestures 

performed in this new paradigm.  

All along this research work, resulting interaction techniques and environments have been 

concretely illustrated for exploring energy consumption data in the context of neOCampus, a project 

of the University of Toulouse 3 that aims at exploring the Campus of the Future, i.e. a smart, innovative 

and sustainable campus. 
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Résumé 

Les données d’aujourd’hui deviennent de plus en plus complexes à cause de la forte croissance de 

leurs volumes ainsi que leur multidimensionnalité. Il devient donc nécessaire d’explorer des 

environnements d’affichage qui aillent au-delà du simple affichage de données offert par les moniteurs 

traditionnels et ce, afin de fournir une plus grande surface d’affichage ainsi que des techniques 

d’interaction plus performantes pour l’exploration de données. Les environnements correspondants à 

cette description sont les suivants : Les écrans large ; les environnements multi-écrans (EME) 

composés de plusieurs écrans hétérogènes spatialement distribués (moniteurs, smartphones, tablettes, 

table interactive …) ; les environnements immersifs. 

Dans ce contexte, l’objectif de ces travaux de thèse est de concevoir et d’évaluer des solutions 

d’interaction originales, efficaces et adaptées à chacun des trois environnements cités précédemment. 

Une première contribution de nos travaux consiste en Split-focus : une interface de visualisation 

et d’interaction qui exploite les facilités offertes par les environnements multi-écrans dans la 

visualisation de données multidimensionnelles au travers d’une interface overview + multi-detail 

multi-écrans. Bien que plusieurs techniques d’interaction offrent plus d’une vue détaillée en simultané, 

le nombre optimal de vues détaillées n’a pas été étudié. Dans ce type d’interface, le nombre de vues 

détaillées influe grandement sur l’interaction : avoir une seule vue détaillée offre un grand espace 

d’affichage mais ne permet qu’une exploration séquentielle de la vue d’ensemble ; avoir plusieurs vues 

détaillées réduit l’espace d’affichage dans chaque vue mais permet une exploration parallèle de la vue 

d’ensemble. Ce travail explore le bénéfice de diviser la vue détaillée d’une interface overview + detail 

pour manipuler de larges graphes à travers une étude expérimentale utilisant la technique Split-focus. 

Split-focus est une interface overview + multi-détails permettant d’avoir une vue d’ensemble sur un 

grand écran et plusieurs vues détaillées (1,2 ou 4) sur une tablette.  



 

 

 

 

Une seconde contribution de nos travaux consiste en TDome : un dispositif d’interaction en entrée 

et sortie conçu pour pallier le manque de techniques d’interaction dédiées aux environnements multi-

écrans. Sa base semi-sphérique lui permet d’offrir plusieurs degrés de liberté sous la forme de 

manipulations physiques (inclinaison, rotation, translation). Le dispositif est augmenté d’un écran 

tactile qui lui permet d’afficher de l’information et de détecter des entrées tactiles. La combinaison de 

manipulations physiques et de gestes tactiles fait de lui un dispositif robuste et augmente l’espace de 

gestes qu’il offre. Ceci lui permet de répondre aux multiples besoins des environnements multi-écrans 

tout en évitant la multiplication de dispositifs dans l’espace de travail et, notamment, la détection des 

écrans dans l’espace de travail, la sélection d’écrans, le transfert de données entre écrans et 

l’interaction avec des écrans distants.  

Enfin, une troisième contribution de ces travaux consiste en l’introduction d’une nouvelle 

approche d’interaction avec des visualisations immersives. L’approche combine 1) l’usage d’un 

dispositif sans-fils de type souris multi-DOF, alliant la précision inhérente à une souris, la souplesse 

d’utilisation du tangible et les larges capacités de contrôle propres aux dispositifs à multiples degrés 

de liberté et 2) l’utilisation du corps de l’utilisateur pour guider les déplacements du dispositif et 

exploiter ainsi la proprioception de l’utilisateur, tout en limitant la fatigue musculaire propre aux 

interactions en l’air.  

Tout au long de ce travail de recherche, les techniques d’interaction conçues ont été concrètement 

illustrées pour l’exploration de données de consommation énergétique dans le contexte de 

neOCampus, un projet de l’université Paul Sabatier qui a pour objectif d’améliorer le confort au 

quotidien pour la communauté universitaire tout en diminuant l’empreinte écologique des bâtiments 

et en réduisant les coûts de fonctionnement (fluide, eau, électricité…). 
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multi-surfaces ; Environnements immersifs ; Dispositif à plusieurs degrés de liberté. 
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