Etude des transistors à effet de champ organiques : réalisation d'OFETs ambipolaires et étude des mécanismes d'injection dans les OFETs verticaux - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Thèse Année : 2020

Study of Organic Field Effect Transistors : realization of ambipolar OFETs and study of injection mechanisms in vertical OFETs

Etude des transistors à effet de champ organiques : réalisation d'OFETs ambipolaires et étude des mécanismes d'injection dans les OFETs verticaux

Résumé

Organic Field Effect Transistors (OFETs) is increasingly attractive thanks to the possibility of producing lighter components at lower cost and on flexible substrates. Being able to couple a light emission function to a transistor function makes its use more interesting. This is the case with display applications, where the pixels are produced by an active matrix technology of organic light-emitting diodes (AMOLED). Having a light-emitting OFET makes possible to combine an OFET with an organic light-emitting diode (OLED) and thus simplifying the design, the manufacturing steps as well as increasing the lifetime of pixels. During this thesis, the study and manufacture of light-emitting OFETs were carried out using two approaches. The first one is based on the study of ambipolar OFETs based on N, N'-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13), an n-type semiconductor, and pentacene, a p-type semiconductor. This study constitutes the first step in obtaining electroluminescent OFETs. The fabrication and characterization of these ambipolar OFETs were performed for the first time in the laboratory's research team. A study of their structure was carried out to find the ideal parameters to obtain a balanced charge transport. The optimized structure is a bilayer structure with a pentacene thickness of 8 nm and a PTCDI-C13 thickness of 20 nm. The addition of an emitting layer between the two semiconductors failed to achieve light emission due to excessive charges trapping. However, this study has opened up new perspectives for future work on ambipolar OFETs. The second approach to study light-emitting OFETs is more innovative thanks to the change of the structure from a classic planar structure to a vertical one. This structure has the advantage of being able to easily integrate an OLED structure and has a homogeneous light emission over a large area. The operating principle is totally different from conventional OFETs: here, the current modulation is no longer done by controlling the conductivity in a semiconductor channel, but by controlling the injection of charges at the source electrode. The study of this structure made it possible to obtain luminous organic transistors. Then, the study of charge injection mechanisms allowed us to understand more deeply the operating principe of these transistors. Several materials have been tested as the source electrode: gold, silver, aluminum and ITO (Indium Tin Oxide). This study allowed us to determine the injection mechanism involved, namely the injection of charges by the modulation of the tunnel effect thanks to the band bending induced by the gate effect in the semiconductor layer close to the interface. It has also been identified that the quality of the source electrode/semiconductor interface plays a major role since poor interface quality leads to a drastic decrease in performance.
L'utilisation de Transistors à Effet de Champ Organiques (OFETs) est de plus en plus attractive grâce à la possibilité de production de composants plus légers, fabriqués à un moindre coût et sur des substrats flexibles. Le fait de pouvoir coupler une fonction émission de lumière à une fonction transistor rend son utilisation d'autant plus intéressante. C'est le cas des applications d'affichage, où les pixels sont réalisés par une technologie de matrice active à diodes électroluminescentes organiques (AMOLED). Le fait d'avoir un OFET électroluminescent permet de combiner un OFET avec une diode électroluminescente organique (OLED) et donc de simplifier la conception, les étapes de fabrication ainsi que d'augmenter la durée de vie des pixels. Durant cette thèse, l'étude et la fabrication des OFETs émetteurs de lumière ont été menés selon deux approches. La première est basée sur l'étude d'OFETs ambipolaires à base de N,N'-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13), un semi-conducteur de type-n, et de pentacène, un semi-conducteur de type-p, ce qui constitue une première étape à l'obtention d'OFET électroluminescent. La fabrication et la caractérisation de ces OFETs ambipolaires ont été réalisées pour la première fois dans l'équipe de recherche du laboratoire. Une étude de leur structure a été menée pour trouver les paramètres idéaux à l'obtention d'un transport de charges équilibré. La structure optimisée est une structure bicouche avec une épaisseur de pentacène de 8 nm et une épaisseur de PTCDI-C13 de 20 nm. L'ajout d'une couche émettrice entre les deux semi-conducteurs n'a pas permis d'obtenir une émission de lumière à cause du piégeage de charges trop important. Cependant, ce travail a ouvert de nouvelles perspectives pour les futurs travaux sur les OFETs ambipolaires. La deuxième approche pour étudier les OFETs émetteurs de lumière est plus innovante grâce au changement de la structure des transistors organiques classiques par une structure verticale. Cette structure présente l'avantage de pouvoir intégrer facilement une structure OLED et d'avoir une émission de lumière homogène sur une grande surface. Le principe de fonctionnement est totalement différent des OFETs classiques : ici, la modulation du courant ne se fait plus par un contrôle de la conductivité dans un canal semi-conducteur, mais par un contrôle de l'injection de charges au niveau de l'électrode source. L'étude de cette structure a permis d'obtenir des transistors organiques lumineux. Ensuite, l'étude des mécanismes d'injection de charges a permis de mieux comprendre le fonctionnement de ces transistors. Plusieurs matériaux ont été testés en tant qu'électrode source : l'or, l'argent, l'aluminium et l'ITO (Indium Tin Oxyde). Cela a permis de déterminer le mécanisme d'injection mis en jeu, soit l'injection de charges par la modulation de l'effet tunnel grâce à la courbure de bande induite par l'effet de grille dans la couche semi-conductrice proche de l'interface. Il a également été identifié que la qualité de l'interface électrode source/semi-conducteur joue un rôle majeur puisqu'une mauvaise qualité d'interface entraîne une diminution drastique des performances.
Fichier principal
Vignette du fichier
2020TOU30175a.pdf (7.64 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03184818 , version 1 (29-03-2021)

Identifiants

  • HAL Id : tel-03184818 , version 1

Citer

Marjorie Morvan. Etude des transistors à effet de champ organiques : réalisation d'OFETs ambipolaires et étude des mécanismes d'injection dans les OFETs verticaux. Micro et nanotechnologies/Microélectronique. Université Paul Sabatier - Toulouse III, 2020. Français. ⟨NNT : 2020TOU30175⟩. ⟨tel-03184818⟩
385 Consultations
315 Téléchargements

Partager

Gmail Facebook X LinkedIn More