Longtime convergence of the Temperature-Accelerated Molecular Dynamics Method - INRIA - Institut National de Recherche en Informatique et en Automatique Accéder directement au contenu
Article Dans Une Revue Nonlinearity Année : 2018

Longtime convergence of the Temperature-Accelerated Molecular Dynamics Method

Résumé

The equations of the temperature-accelerated molecular dynamics (TAMD) method for the calculations of free energies and partition functions are analyzed. Specifically, the exponential convergence of the law of these stochastic processes is established, with a convergence rate close to the one of the limiting, effective dynamics at higher temperature obtained with infinite acceleration. It is also shown that the invariant measures of TAMD are close to a known reference measure, with an error that can be quantified precisely. Finally, a Central Limit Theorem is proven, which allows the estimation of errors on properties calculated by ergodic time averages. These results not only demonstrate the usefulness and validity range of the TAMD equations, but they also permit in principle to adjust the parameter in these equations to optimize their efficiency.

Dates et versions

hal-01578911 , version 1 (30-08-2017)

Identifiants

Citer

Gabriel Stoltz, Eric Vanden-Eijnden. Longtime convergence of the Temperature-Accelerated Molecular Dynamics Method. Nonlinearity, 2018, 31 (8), pp.3748-3769. ⟨10.1088/1361-6544/aac541⟩. ⟨hal-01578911⟩
250 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More