Skip to Main content Skip to Navigation
Journal articles

Deep learning applied to glacier evolution modelling

Abstract : We present a novel approach to simulate and reconstruct annual glacier-wide surface mass balance (SMB) series based on a deep artificial neural network (ANN; i.e. deep learning). This method has been included as the SMB component of an open-source regional glacier evolution model. While most glacier models tend to incorporate more and more physical processes, here we take an alternative approach by creating a parameterized model based on data science. Annual glacier-wide SMBs can be simulated from topo-climatic predictors using either deep learning or Lasso (least absolute shrinkage and selection operator; regularized multilinear regression), whereas the glacier geometry is updated using a glacier-specific parameterization. We compare and cross-validate our nonlinear deep learning SMB model against other standard linear statistical methods on a dataset of 32 French Alpine glaciers. Deep learning is found to outperform linear methods, with improved explained variance (up to +64 % in space and +108 % in time) and accuracy (up to +47 % in space and +58 % in time), resulting in an estimated r2 of 0.77 and a root-mean-square error (RMSE) of 0.51 m w.e. Substantial nonlinear structures are captured by deep learning, with around 35 % of nonlinear behaviour in the temporal dimension. For the glacier geometry evolution, the main uncertainties come from the ice thickness data used to initialize the model. These results should encourage the use of deep learning in glacier modelling as a powerful nonlinear tool, capable of capturing the nonlinearities of the climate and glacier systems, that can serve to reconstruct or simulate SMB time series for individual glaciers in a whole region for past and future climates.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02914563
Contributor : Eric Sauquet <>
Submitted on : Friday, January 22, 2021 - 4:01:48 PM
Last modification on : Wednesday, February 17, 2021 - 10:15:23 AM

File

tc-14-565-2020.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, et al.. Deep learning applied to glacier evolution modelling. The Cryosphere, Copernicus 2020, 14 (2), pp.565-584. ⟨10.5194/tc-14-565-2020⟩. ⟨hal-02914563⟩

Share

Metrics

Record views

166

Files downloads

43