index - Production scientifique de l'UMR 6143 - M2C Accéder directement au contenu

Bienvenue sur la bibliothèque en ligne des publications de M2C


UMR 6143 "Morphodynamique Continentale et Côtière"

Le laboratoire Morphodynamique Continentale et Côtière (M2C) est une Unité Mixte de Recherche (UMR 6143) créée en 1996. Il est rattaché au CNRS (INSU en principal et INEE en secondaire), à l’Université de Caen Normandie (UNICAEN) et à l’Université de Rouen Normandie (URN).
Les recherches du laboratoire M2C s’intéressent à la caractérisation et à la modélisation de la dynamique des processus naturels et des différents compartiments, le long du continuum TERRE-MER, à différentes échelles de temps et d’espace. Les recherches s’organisent en 3 thèmes :
  • Bassins versants
  • Estuaire
  • Côtier

 

Ces recherches sont réalisées avec une approche interdisciplinaire intégrant des chercheurs spécialisés en mécanique, géosciences, océanographie et hydrologie, microbiologie et biologie des organismes.

En raison de la réponse qu’elles constituent aux attentes des gestionnaires, collectivités et industriels, les activités que nous menons en matière de valorisation s’inscrivent dans le cadre de différentes recherches appliquées.

Nos recherches couplent la mesure in situ grâce à de nombreux équipements dédiés (voir rubrique plateaux techniques), des approches expérimentales et de modélisations numériques.

Dépôts

1 280


Evolution des dépôts

 

Dernières publications

The emergence and selection of antibiotic resistance is a major public health problem worldwide. The presence of antibiotic-resistant bacteria (ARBs) in natural and anthropogenic environments threatens the sustainability of efforts to reduce resistance in human and animal populations. Here, we use mathematical modeling of the selective effect of antibiotics and contaminants on the dynamics of bacterial resistance in water to analyze longitudinal spatio-temporal data collected in hospital and urban wastewater between 2012 and 2015. Samples were collected monthly during the study period at four different sites in Haute-Savoie, France: hospital and urban wastewater, before and after water treatment plants. Three different categories of exposure variables were collected simultaneously: 1) heavy metals, 2) antibiotics and 3) surfactants for a total of 13 drugs/molecules; in parallel to the normalized abundance of 88 individual genes and mobile genetic elements, mostly conferring resistance to antibiotics. A simple hypothesis-driven model describing weekly antibiotic resistance gene (ARG) dynamics was proposed to fit the available data, assuming that normalized gene abundance is proportional to antibiotic resistant bacteria (ARB) populations in water. The detected compounds were found to influence the dynamics of 17 genes found at multiple sites. While mercury and vancomycin were associated with increased ARG and affected the dynamics of 10 and 12 identified genes respectively, surfactants antagonistically affected the dynamics of three genes. The models proposed here make it possible to analyze the relationship between the persistence of resistance genes in the aquatic environment and specific compounds associated with human activities from longitudinal data. Our analysis of French data over 2012–2015 identified mercury and vancomycin as co-selectors for some ARGs.

Continuer la lecture Partager

Fire is a potential significant driver of soil erosion in the Mediterranean area, as it results in the partial removal of vegetation and the alteration of organic matter, affecting soil structure and stability. The erosion of particle sizes is influenced by the intensity and duration of rainfall, regulated by disturbance regimes and vegetation cover. We hypothesize that, during the Holocene, high fire frequency and intensity under precipitation control may have contributed to soil erosion, while plant cover and composition could have mitigated it. This plant cover, in turn, might have been influenced by biomass burning. To test this hypothesis, we conducted a detailed analysis of sediments spanning the last 11,500 years from a small mountain lake, Corsica, situated in the black pine forest belt. The high temporal resolution analysis (∼10 years per sample), used granulometry and loss-on-ignition as proxies for erosion and ecosystem productivity in both the lake and watershed, and fire and plant macroremains as fire and tree cover proxies, respectively. The correlation between particle size and the contents of organic or mineral matter with mean fire return intervals (FRI) revealed significant patterns. Long fire intervals were associated with more fine and coarse sands, whereas short mean FRI positively correlated with clay and, fine and coarse silt, along with higher total mineral and organic matter contents. These findings suggest that fires were more frequent when rain duration was sustained but runoff intensity was lower. Conversely, wildfires were less frequent during intense runoff periods (wetter climate). Unlike fire frequency, fire severity did not correlate with erosion, and tree cover and plant richness had minimal to no effect. The 8.2 kyr event was characterized by runoff transporting primarily coarse sands, i.e. a dry period with very intense rains. This suggests that the system is primarily top-down controlled by climate. Multimillennial erosion trends are influenced by fire frequency and precipitation regimes, whereas vegetation does not seem to have a mitigating effect on this process.

Continuer la lecture Partager

Sediment cores from three major French watersheds (Loire, Meuse and Moselle) have been dated by 137Cs and 210Pbxs from 1910 (Loire), 1947 (Meuse) and 1930 (Moselle) until the present in order to reconstruct trajectories of plastic additive contaminants including nine phthalate esters (PAEs) and seven organophosphate esters (OPEs), measured by gas chromatography–mass spectrometer (GC–MS–MS). Historical levels of ∑PAEs were higher than those of ∑OPEs in the Loire and the Moselle sediments, while ∑PAEs and ∑OPEs contents were of the same order of magnitude in the Meuse sediments. Although increases in concentrations do not evolve linearly, our results clearly indicate an increase in OPEs and PAEs concentrations from the 1950–1970 period onwards, compared with the first half of the 20th century. Our results show that, ∑OPE contents increase gradually over time in the Loire and Meuse rivers but evolve more randomly in the Moselle River. Trajectories of ∑PAEs depend on the river and no generality can be established, suggesting sedimentary reworking and/or local contamination. Data from this study allowed comparisons of contents of ∑OPEs and ∑PAEs between rivers, with ∑OPE concentrations in the Moselle River > Meuse River > Loire River, and concentrations of ∑PAEs in the Loire River > Moselle River > Meuse River. Among all PAEs, di(2-ethylhexyl) phthalate (DEHP) was the most abundant in all sediment samples, followed by diisobutyl phthalate (DiBP). Tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE in sediments of the three rivers. In addition, strong positive Pearson correlations were observed between organic matter (OM) parameters and OPE concentrations, and to a lesser extent, between OM parameters and PAE concentrations. This is particularly true for the Moselle River and for the Loire River, but less so for the Meuse River.

Continuer la lecture Partager

With about 8000 marine benthic species, the amphipod crustaceans form one of the richest animal groups of the worldwide Ocean. They have colonized a wide range of soft-and hard-bottom natural and artificial habitats extending from the intertidal to hadal zones. Moreover, they show a broad size spectrum, with numerous giant species exceeding 20 cm in length and some species smaller than 2 mm. When biofouling artificial hard surfaces, some tube-building species can form very dense populations comprising up to 100,000 individuals per square meter. Amphipods are important prey for fish and mammals. Along with cephalopod juveniles, they are also included in the trophic diet of shorebirds that consume amphipods mostly during the low tide on tidal flats. They display diel migration, which reinforces the predation by demersal fish in the suprabenthic zone just above the sea bed, as well as by pelagic fish in the water column. Despite their importance in terms of biodiversity and trophic transfer, no general overview is available on the role of benthic amphipods in marine ecosystem food webs. Various methods, including laboratory and field experiments, as well as the analysis of stomach contents and DNA extraction, have been used to identify the prey/predator trophic links. Based on an extensive literature review, this study discusses the role of marine benthic amphipods as potential food for higher trophic levels in natural and artificial hard-bottom communities created via the construction of offshore wind farms.

Continuer la lecture Partager

 

 

 

Collaborations internationales

 

 

 

 

Site de Caen

Morphodynamique Continentale et Côtière

Université de Caen Normandie (Campus 1)

24 rue des Tilleuls

14000 Caen Cedex

https://hal-normandie-univ.archives-ouvertes.fr/

 

Site de Rouen

Morphodynamique Continentale et Côtière

Université de Rouen Normandie (bâtiment Blondel Nord)

Place Emile Blondel

76821 Mont-Saint-Aignan Cedex